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ABSTRACT

ADVENTURES WITH RNA FISH FOR DIAGNOSING VIRAL INFECTIONS AND

EXPLORING SINGLE-CELL HETEROGENEITY IN CANCER

Sydeny Shaffer

Arjun Raj

Single-molecule RNA FISH is a robust method for visualizing individual molecules of

RNA within intact cells that has been used extensively for describing single-cell hetero-

geneity in gene expression. In this thesis, we leverage RNA FISH-based technologies

for two major problems in biology and medicine: rapid detection of viral infections and

understanding mechanisms of resistance to targeted therapy in cancer. Until recently,

RNA FISH was not a viable technology for rapid diagnostics, as the hybridization

process required a minimum of 6 hours. We start by presenting a modification to the

RNA FISH protocol developed by Raj et al. 2008, that enables hybridization in only 5

minutes, and then use these improvements in hybridization time to develop RNA FISH

for detection of respiratory viruses. We demonstrate that RNA FISH is capable of de-

tecting influenza, rhinovirus, and adenovirus, and propose two probe design strategies

with clinical value for discriminating viral strains and detecting many strains at once.

Ultimately, we extend these techniques to discriminate single-base differences in the

viral sequences, which is clinically useful as single-base mutations can render viruses

resistant to our best antiviral medications. In the next section of this thesis, we use

RNA FISH for another application: examining single-cell heterogeneity in cancer cells

treated with targeted therapy. We first show that melanoma cells can display profound

transcriptional variability at the single cell level that predicts which cells will ultimately

resist drug. This variability involves infrequent, semi-coordinated transcription of a

number of resistance markers at high levels in a very small percentage of cells. The
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addition of drug then induces an epigenetic reprogramming in these cells, converting

the transient transcriptional state to a stably resistant state. This reprogramming is a

progressive process consisting of a loss of SOX10-mediated differentiation followed by

activation of new signaling pathways, partially mediated by activity of Jun-AP-1 and

TEAD. Our work reveals the multistage nature of the acquisition of drug resistance

and provides a framework for understanding resistance dynamics. Taken together,

these two applications of RNA FISH show its generalizability for exploring many

different questions in biology and clinical medicine.
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Chapter 1

Introduction

Humans are made up of trillions of individual cells with numerous cell types responsi-

ble for performing different functions. Each cell contains essentially the same DNA

sequence, but it is through transcription of different RNAs that cells take on their

different functions. One method for studying which RNA sequences are present in

cells is RNA fluorescence in situ hybridization (FISH), which fluorescently labels each

of the RNA transcripts in intact cells. In brief, these methods involve hybridization

of fluorescently labeled DNA oligonucleotides to a particular RNA of interest. The

sequence of the oligonucleotide is such that it is complementary to its target, and the

length and number of such probes can depend on the particular method being used.

Our lab uses of clever variation of this technique developed by Raj et al. 2008 in which

we use many, usually 15-32, short oligonucleotides, typically 20 base pairs in length,

that all bind to different regions of the same RNA species [91]. Any single fluorescent

probe will have some off target binding; however, the combined binding of all the

different probes at the same site leads to a fluorescent signal that is much brighter

than spurious binding to off target sites. In recent years, our lab and others have used

RNA FISH for a range of applications including, but not limited to characterizing gene

expression in intact tissues, studying the mechanics of transcription, and visualizing

chromosome structure [40, 58, 83, 104, 110].

In this thesis, I describe our work applying RNA FISH to two major problems

1
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in biology and medicine: rapid detection of respiratory viruses and understanding

mechanisms of resistance to targeted therapy in cancer. First, we developed a variation

on the RNA FISH protocol that enables the entire method to be performed in 5 minutes.

Second, we applied this new rapid RNA FISH technique for the detection of viruses in

intact cells. Then finally, we used RNA FISH in combination with phenomenological

cell culture and high-throughput molecular biology techniques to uncover non-genetic

contributions to drug resistance in melanoma.

Some of the work presented here has appeared in print in the following publications

and has been reprinted with permission:

• S .M. Shaffer and R. P. Joshi et al., Lab on a Chip, 2015, 15(15):3170?3182.

• S. M. Shaffer et al., PLOS One, 2013, 8(9):e75120.

2
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Chapter 2

Turbo RNA FISH

2.1 Background Turbo RNA FISH

Single molecule RNA FISH offers a number of advantages over other single cell

expression quantification tools. In its latest incarnation, it offers the ability to detect

individual RNA molecules via fluorescence microscopy, in which each RNA molecule

appears in the cell as a bright, diffraction limited spot [35, 91]. Using software to

count the spots, one can quantify the absolute number of RNA in individual cells

without requiring any amplification, even within the cell's natural developmental

context [51, 91]. Moreover, one can analyze spot positions to gain insights into the

location of RNA within the cell [49, 71]. Examples include transcriptional dynamics

at the site of gene [58, 67], motion at the site of transcription itself [15, 73], and viral

RNA localization within the cell [17, 18].

RNA FISH does, however, suffer from some important drawbacks compared to

other methods in its current incarnation. One is that it is typically a low-throughput

method in the sense that, like RT-qPCR, one can usually only analyze around 5 or so

genes at a time, although barcoding schemes can increase this number to many dozens

and potentially hundreds [64, 65]. Yet another issue is that most current protocols

rely on a long hybridization (often overnight) and series of washes in order to generate

adequate and specific signals. The latter limitation hinders the use of RNA FISH in

3
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many scenarios, as it is considerably slower than RT-qPCR in practice, which usually

takes on the order of hours to complete. The lack of a rapid version of RNA FISH

also places severe restrictions on its use in diagnostic applications, in which timely

results are hugely important.

In this thesis and our related publications, we here describe a protocol that enables

one to obtain quantifiable single molecule RNA FISH signals in under 5 minutes

[106]. We optimized both fixation conditions and hybridization conditions to achieve

these results, showing there is a tradeoff between hybridization speed and probe

concentration. We showed that these conditions apply across a variety of probes and

cell types, and show that the technique is also compatible with our recently developed

SNP FISH [57] and iceFISH [58] methods.

2.2 RNA FISH enables single molecule detection

The method we employ for RNA FISH involves the use of several 20-base long

single-stranded DNA oligonucleotides, each individually labeled [89, 91] (Fig. 2.1, A).

We design these oligonucleotides to bind to different segments of the target RNA via

Watson-Crick base pairing, and the combined fluorescence from all the fluorophores at

the single RNA leads to a fluorescent spot of intensity much higher than that of the

background; we show a representative image for a probe targeting TBCB mRNA in

Fig. 2.1, B.

2.3 Fixation conditions

Traditionally, we have performed our hybridizations overnight in order to obtain

strong signals. In order to perform rapid RNA FISH, we initially reasoned that one

could speed the hybridization kinetics by increasing the concentration of probe included
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TBCB mRNA

Overnight FISH methanol fix

Turbo FISH formaldehyde fix Turbo FISH methanol fix

Target mRNA

single stranded DNA oligonucleotide probesA

B

C E

D

Figure 2.1: Depiction of the RNA FISH scheme and demonstration of rapid hybridiza-
tion. A. Schematic of the single molecule RNA FISH method, in which we use dozens
of short fluorescently labeled oligonucleotides that all target the same RNA molecule.
B. Image showing RNA FISH targeting mRNA from the TBCB gene under standard
overnight hybridization conditions (formaldehyde fixation). Each spot is a single mRNA
molecule. C. Image showing RNA FISH signals from an attempt at rapid hybridization
(5 minutes) with a high concentration of probe but with formaldehyde fixation. D.,
E. Traditional overnight hybridization and Turbo RNA FISH hybridization using
methanol-fixed cells. All images are maximum projections of a stack of optical sections
encompassing the three-dimensional volume of the cell. DAPI (nuclear stain) is in
purple.
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in the hybridization. Thus, we initially attempted to speed hybridization by simply

increasing the amount of probe in our hybridization solution. We found, however, that

despite increasing the concentration 20 fold, the signals were greatly diminished at

hybridization times of 5 minutes (Fig. 2.2, B, C). Our normal protocol utilizes cells

that are fixed with formaldehyde, and we wondered whether the cross-links created by

this form of fixation could impede the ability of the oligonucleotide probes to find their

targets. To investigate this possibility, we performed hybridization with both ethanol-

and methanol- fixed cells (each performed at -20°C), both of which do not generate

cross-links. We found that both alcohol-based fixatives performed considerably better

(Fig. 2.2, D, E), generating images that were roughly equivalent to those obtained by

overnight hybridization with standard conditions. (We note also that we reduced the

washing time in these cases to three one-minute washes, for a total of 8 minutes.)

We then quantified the number of mRNA detected in all conditions using software

similar in principle to that we have applied previously [91]. We found that after

performing overnight hybridization, we obtained roughly the same number of RNA

per cell with all fixation methods, but for rapid hybridizations performed at high

concentrations, both alcohol-based fixatives gave similar results to those obtained

from the overnight hybridizations, whereas the formaldehyde fixed cells performed

much more poorly (Fig. 2.2, A, B). We note, however, that the ethanol-fixed cells

tended to disintegrate after spending over 48 hours in ethanol solution, so we used

methanol-fixed cells for the rapid hybridization experiments in the remainder of the

paper.
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Figure 2.2: Comparison of fixation conditions for both traditional overnight hybridiza-
tions and rapid hybridization. A. Comparison of number of spots detected and cumu-
lative distribution functions for the TBCB gene with probes labeled with the Alexa
594 fluorophore. Error bars represent the standard error of the mean. No statistically
significant differences exist between the overnight RNA FISH samples. Turbo RNA
FISH for TBCB gene on formaldehyde-fixed cells is statistically different from Turbo
RNA FISH on methanol- and ethanol-fixed cells (p=3.82x10-65 and p=4.89x10-96,
respectively; two-tailed t-test). For all conditions, we analyzed spot counts on 100-150
cells. B. Comparison of number of spots detected and cumulative distribution func-
tions for the TOP2A gene with probes labeled with the Cy3 fluorophore. Error bars
represent the standard error of the mean. Overnight RNA FISH for TOP2A gene on
formaldehyde-fixed cells is statistically different from overnight RNA FISH on ethanol-
fixed cells (p=0.0067; two tailed t-test). No other statistically significant differences
exist between overnight RNA FISH samples. Turbo RNA FISH for TOP2A gene on
formaldehyde-fixed cells is statistically different from Turbo RNA FISH on methanol-
and ethanol-fixed cells (p=9.57x10-28 and p=4.22x10-30, respectively; two-tailed t-test).
For all conditions, we analyzed spot counts on 100-150 cells. Data shown represents
one of two replicate experiments.
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2.4 Relationship between concentration and hy-

bridization time

We then explored the degree to which there is a tradeoff between increasing the

concentration of the probe and the hybridization time for rapid hybridization in

methanol-fixed cells. In order to do so, we needed a means to assess and compare the

quality of the signal in these various conditions. Ultimately, we settled on a metric

based on the sensitivity of the threshold between signal and background (Fig. 2.2, A).

Briefly, we first use a linear filter designed to enhance spot-like signals. We then found

all candidate spots by locating all regional maxima. These candidate spots consist of

two populations, one corresponding to background spots and one corresponding to

the target RNA molecules. When the signals are clear and quantifiable, the intensities

of the RNA spots should be nicely separated from those of the background spots (Fig.

2.3, A). However, if the RNA spots are not of high quality, then the spot intensities of

the two populations can blend together, making it difficult to accurately quantify the

number of true RNA spots within the image (Fig. 2.3, A). To quantify this difference,

we measured the degree of separation in the intensities of the two subpopulations by

essentially measuring the sensitivity of the threshold separating the two; i.e., once

the threshold is set, if we move the threshold slightly higher or lower, we measured

the relative change in the number of RNA detected (Fig. 2.3, A). We found that this

metric for quantification captured the qualitative visual differences between conditions.

We further note that metrics such as spot intensity and average spot count can be

somewhat misleading as metrics of the ability to accurately count RNA in single cells

(Fig. 2.3, C). For instance, we have found that RNA spot intensity in and of itself

need not be particularly high for accurate spot counting; rather, it just needs to be

clearly and uniformly higher than the intensity of background spots. Average spot
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counts are also problematic because even when thresholds are ill-defined (as in Fig. 2.3,

A, right), one could still choose thresholds that yield similar spot counts on average,

even though another person might equally well choose a different threshold, giving

completely different results. For these reasons, we primarily focused on the sensitivity

metric as an objective metric of signal quality.

We here present data from A549 cells, a common cancer cell type that we have

found overall to be more difficult to perform rapid hybridizations in (hence providing

a stringent test of our method). We performed RNA FISH (targeting TOP2A mRNA)

over a range of hybridization times from 30 seconds to 10 minutes and probe con-

centrations ranging from our conventional probe concentration to 100 fold greater

(approximately 4.4 µM to 400 µM). Throughout, we compared also to our traditional

overnight hybridization protocol (Fig. 2.3, B, C). We found that we were able to obtain

readily quantifiable signals after 5 minutes of hybridization in the A549 cells (Fig. 2.3,

B, C). We found that there is a clear tradeoff in that higher concentrations of probe

in the hybridization solution allow for shorter hybridization times. The exact amount

of time and concentration one should use in these cases will of course depend on the

constraints of the problem at hand, but we believe that a 5 minute hybridization at a

probe concentration of 500 µM would be practical in many real-world scenarios. We

also note that it is in some cases possible to perform rapid hybridizations in as little

as 30 seconds with high concentrations of probe.

For comparison, we also performed the same analysis by using the concentrations

and wash protocol we used for our conventional overnight RNA FISH, except performing

the hybridization for various amounts of time. We found that we obtained poorly

quantifiable signals (as indicated by the sensitivity metric) once the hybridization

time went below 2 hours, which is 24-fold as much time as our rapid hybridization

assay (Fig. 2.4, A, B).
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Figure 2.3: Quantification of signal quality and comparison of different hybridization
times and probe concentrations. A. Schematic depicting the manner in which we
quantify signal quality via threshold sensitivity. B. Sensitivity of threshold measured
in varying probe concentrations and hybridization times. The dotted line represents
the sensitivity of a traditional overnight RNA FISH. Error bars reflect standard
error of the mean. C. Spot counts for the same conditions as in B. Error bars reflect
standard deviation. At 10 minutes and for all probe concentrations, the spot counts
for Turbo FISH are statistically different from overnight FISH (4X: p=9.87x10-6,
1X: p=0.0136, 1/4X: p=4.86x10-6, 1/16X: p=1.75x10-11; two-tailed t-test). For all
conditions, we analyzed spot counts and calculated the sensitivity on 80-120 cells.
Data shown represents one of two replicate experiments.

10



www.manaraa.com

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

0

40

80

120

160

200

0 20 40 60 80 100 120 140

−0.2

−0.18

−0.16

−0.14

−0.12

−0.08

−0.10

−0.06

−0.04

−0.02

0

−0.2

−0.18

−0.16

−0.14

−0.12

−0.08

−0.10

−0.06

−0.04

−0.02

0

0 20 40 60 80 100 120 140

140

N
u
m
b
e
r 
o
f 
T

B
C

B
 m
R
N
A
 p
e
r 
c
e
ll

N
u
m
b
e
r 
o
f 
T

O
P

2
A
 m
R
N
A
 p
e
r 
c
e
ll

s
e
n
s
it
iv
it
y

s
e
n
s
it
iv
it
y

Turbo FISH
Turbo FISH

Conventional FISH

Conventional FISH

Conventional FISH Conventional FISH

Hybridization time (minutes)Hybridization time (minutes)

Turbo FISH
Turbo FISH

TOP2A (Cy3)TBCB (Alexa 594)A

B

Figure 2.4: Comparison of signal from Turbo RNA FISH (5 minutes; red) to con-
ventional RNA FISH (blue). A. Comparison of RNA FISH signal sensitivity at a
range of hybridization times. Error bars reflect standard error of the mean. At 5
minutes, we found a statistically significant difference in signal sensitivity between
Turbo FISH and conventional FISH for TBCB gene and TOP2A gene (p=4.75x10-11

and p=1.19x10-74, respectively; two-tailed t-test). B. Comparison of RNA FISH spot
count at a variety of hybridization times. Error bars reflect standard deviation. At
5 minutes, we found a statistically significant difference in RNA FISH spot count
between the Turbo FISH and conventional FISH for TBCB gene and TOP2A gene
(p=1.69x10-68 and p=2.07x10-20, respectively; two-tailed t-test). For all conditions, we
analyzed spot counts and calculated sensitivity on 100-150 cells. Data shown represents
one of two replicate experiments.
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2.5 iceFISH and SNP FISH

In our lab, we have recently developed two variants of single molecule RNA

FISH: 1. a method based on targeting introns that reveals chromosome structure and

transcriptional activity (intron chromosomal expression FISH or iceFISH [58]), and 2.

a method that utilizes both a new probe design and spot colocalization analysis to

enable us to detect single nucleotide differences on individual transcripts (SNP FISH

[57]). We wanted to test whether these methods would work in the rapid hybridization

format. For iceFISH, we constructed an intron-based chromosomal “paint” that targets

chromosome 19. We found that the iceFISH signals were comparable to those obtained

via conventional overnight FISH using our rapid hybridization conditions (Fig. 2.5, 5).

For SNP FISH, we used an approach in which we use a single oligonucleotide

“SNP detection” probe hybridized to a “mask” oligonucleotide that leaves just a short

“toehold” region available to nucleate binding to the target RNA (Fig. 2.6,). The

toehold region is short enough (5-10 bases) that it provides discrimination of single-base

mismatches, but upon the binding of the correct probe, the mask dissociates via strand

displacement [131], leading to the formation of a long (20-30 base) hybrid that provides

stability. Meanwhile, we labeled the rest of the target RNA using conventional RNA

FISH probes (which we call “guide probes”) that tell us where the target RNA are

within the cell. Using colocalization between the SNP detection probe and the guide

probe, we could assign each RNA based on whether or not it has the SNP. Our previous

work demonstrated that this approach works under conventional RNA FISH conditions

[57]. To check whether we were able to perform SNP FISH in rapid hybridization

conditions, we used higher concentration of probes and shortened hybridization times

(5 minutes) in methanol fixed cells. We tested Turbo SNP FISH in WM983b cells (gift

of Meenhard Herlyn, Wistar Institute), which are heterozygous for the V600E mutation

12



www.manaraa.com

intron FISH chromosome 19TOP2A mRNA FISH

HeLa cells

T
u

rb
o

 F
IS

H
O

v
e

rn
ig

h
t 
F

IS
H

chromsome 19 

and derivatives

chromsome 19 

and derivatives

Figure 2.5: Demonstration of Turbo iceFISH. We performed Turbo FISH using iceFISH
probes that targeted a total of 20 introns in genes on chromosome 19 (right panels),
while simultaneously performing RNA FISH for TOP2A mRNA (left panels). We
compared both Turbo FISH to conventional RNA FISH performed overnight (top vs.
bottom panels). All images are maximum projections of a stack of optical sections
encompassing the three-dimensional volume of the cell. DAPI (nuclear stain) is in
blue.
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in the BRAF gene. We used both probes targeting the V600E BRAF mutation or

a region common to both alleles on the BRAF mRNA as a control for non-specific

binding (Fig. 6A). We found that in both Turbo SNP FISH and conventional overnight

SNP FISH, the probes targeting the heterozygous base in BRAF indeed showed

roughly equivalent levels of both mutant and wild-type mRNA (Fig. 2.6, A, top). The

probes targeting the region common between the two alleles identified virtually all the

mRNA as being wild-type in both turbo and conventional conditions, showing that

the rate of cross-hybridization remained low even with rapid hybridization conditions

(Fig. 2.6, A, bottom). Quantitatively, the results from both turbo and conventional

SNP FISH were similar, both to each other and to our previous results [57] (Fig. 2.6,

B).

2.6 Discussion Turbo RNA FISH

In this paper, we have described a protocol that enables rapid and quantitative

detection of RNA targets via RNA FISH. We found that alcohol-based fixatives

provide the necessary probe accessibility for rapid hybridization via increased probe

concentration, potentially enabling hybridizations in as little as 30 seconds.

Our experiments show that there is a straightforward tradeoff between concentra-

tion of probe and the speed of hybridization. We have found that increasing probe

concentration by 20X compared to our normal overnight protocol yields reliable RNA

FISH results after just 5 minutes of hybridization. At first glance, this increased probe

concentration may not seem economically viable, considering the increased use of

probes (which are the most costly reagent in the RNA FISH protocol). However, we

note that because of the decreased time for drying, our protocol uses roughly 10 fold

less hybridization solution for the hybridization itself, greatly mitigating such concerns.
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Figure 2.6: Demonstration of Turbo SNP FISH. A. Demonstration of SNP FISH
efficacy under Turbo FISH and conventional RNA FISH conditions in WM983b cells.
We targeted BRAF mRNA with guide probes, and then used detection probes that
targeted either the V600E mutation for which BRAF is heterozygous in this cell
line (top panels) or a common region for which BRAF is homozygous in this cell
line (bottom panels). Left panels show the signals from the guide probe (that labels
the mRNA), the middle panel shows the detection probe that detects the wild-type
sequence, and the right panel shows the detection probe that detects the mutant
sequence. B. Quantification of RNA as being either mutant or wild type in this cell
line. Each bar corresponds to data from a single cell.
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We believe that the ultimate choice of how much probe to use and how fast to drive

the reaction will depend on the specifics of the application at hand. In some cases,

getting a hybridization time of 5-10 minutes may be perfectly fine, in which case one

may not need to use large concentrations of probe. However, in some situations, such

as during a surgical procedure, the decreased hybridization times may be a benefit

that outweighs the cost of increased probe usage.

Of course, even with rapid hybridizations, we have not addressed the issue of the

imaging time itself. Typically, image acquisition may require taking image stacks from

multiple positions on the slide to obtain enough cells worth of image data to make

statistically significant claims about differences in gene expression. Currently, doing

so could take on the order of 10-20 minutes per condition. However, we believe that

technical advances can reduce the time required for both image acquisition and analysis

by at least an order of magnitude. In such a case, one could envision comparing gene

expression in two samples in well under 30 minutes from living cells to quantified data.

It may be useful here to make a comparison to other methods such as RT-qPCR.

RT-qPCR is the current gold standard for gene expression analysis, widely considered

to be the most accurate method for quantifying gene expression to date. It has

many benefits, including high dynamic range, low cost per reaction, and the ability

to parallelize in 96-well plate format. The qPCR itself usually takes on the order of

1-2 hours to complete, but if one includes both RNA extraction and setup time, the

total time required is probably closer to around 3-4 hours. (These extra steps also

increase the cost of the experiment as well.) We believe that with rapid hybridization,

RNA FISH competes favorably with RT-qPCR on most counts. With respect to

quantification, our method provides accurate, absolute counts of gene expression of 3

to 5 genes in individual cells without the explicit need for normalization. Since RNA

FISH is a direct detection scheme without any amplification, we are able to detect
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even small fold-changes with high precision, differences that would be hard to measure

accurately with RT-qPCR, at least not without a large number of replicates. The

cost per reaction is probably dominated by the cost of the probe, which is currently

around $300-$600 per probe set for 10,000 hybridizations ($0.06 per reaction) and

is thus comparable to a molecular beacon or Taq-man RT-qPCR probe. Of course,

costs of labor, equipment and other reagents are variables that are hard to predict,

but will be of the same order of magnitude, although we note that the labor required

for RNA FISH is probably lower, whereas the cost of an automated microscope is

admittedly higher than most qPCR machines. Both the accuracy and cost comparisons

to RT-qPCR were valid even with overnight RNA FISH.

The time required for previous iterations of RNA FISH, however, was considerably

longer than for RT-qPCR, and our new method alleviates that discrepancy. If one

is just comparing the expression of a few genes in a few conditions, then we believe

our method is unequivocally several times faster than RT-qPCR, especially when one

factors in RNA extraction and setup time. For analyzing larger numbers of genes in

parallel, though, the imaging time will become a factor. If one assumes 5-10 minutes

per condition and triplex RNA detection, then analyzing, say, 20-30 genes could require

up to 2 hours. With advances in high throughput imaging, we anticipate that one

could reduce this time by an order of magnitude, thus further increasing the speed

advantages.

Another major advantage of RNA FISH is that it also provides single cell infor-

mation, something that is much more difficult to obtain with single cell RT-qPCR

approaches. This enables one to measure variability in gene expression from cell to cell.

Since the measurements yield absolute numbers of RNA, the measurements do not

necessarily require normalization to an internal control (such as GAPDH ), although

one could perform such an analysis if one wished through multiplexing. Normalization
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can be difficult to perform with RT-qPCR approaches, since one typically uses all the

material for a single qPCR reaction, leaving none for further normalization.

Furthermore, RNA FISH also provides spatial information on the localization of

RNA. Such information is important both for examining differences from cell to cell

within a tissue and even subcellular spatial localization. In tissues, one can easily

identify particular cells by labeled RNA specific to those cells with one color and then

looking at the gene of interest in another color. Subcellular information can be of

particular importance for RNA that localize to particular regions of the cell, such as

many non-coding RNA, in which case RNA FISH can reveal much about its behavior.

We have also shown that one can perform iceFISH and SNP FISH to visualize

chromosomes and single base changes, respectively, with rapid hybridization. Such

techniques could be useful for rapidly diagnosing chromosomal abnormalities and for

rapid genotyping of particular single nucleotide variants.

In summary, our method for rapid hybridization results in orders of magnitude

improvements in hybridization time for single molecule RNA FISH, enabling a new

set of high throughput and rapid diagnostic applications.
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Chapter 3

Developing an RNA FISH-based

influenza diagnostic

3.1 Background: Need for rapid and accurate viral

diagnostics

Viral infections are the cause of a wide range of clinical diseases. While some viral

infections can be diagnosed from signs and symptoms alone, for many viral infections,

the clinical signs and symptoms overlap with other diseases and infectious agents

[63, 69, 116]. For these reasons, clinicians need laboratory tools to diagnose viral

infections. However, currently available viral diagnostics have significant limitations in

that they can be very slow, expensive, and are typically not performed at the point-of-

care. Overcoming these challenges would enable faster treatment of viral infections,

prevent unnecessary doctors office visits, save money, and facilitate large-scale viral

surveillance. Here we aim to establish RNA FISH as a methodology for faster, cheaper,

and point-of-care viral diagnostic assays.

Most current diagnostic tests target either viral proteins, using immunofluorescence

or enzyme-linked immuno assay (ELISA), or viral nucleic acids, using RT-PCR. The vast

majority of protein-based diagnostics use antibodies, which require long development
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times at high costs. In contrast, nucleic acid detection is highly sensitive and highly

specific [116, 130], and allows easier development of new assays as targets evolve.

Detecting nucleic acids by RT-PCR, however, requires 1-2 hours and a thermal cycler,

which can be a limitation in common clinical practice [41], especially for viruses that

are typically treated in a doctor's office or emergency room.

A complementary approach for nucleic acid detection is direct labeling via RNA

fluorescence in situ hybridization (RNA FISH). Conventionally, RNA FISH has suffered

from three main drawbacks preventing its use as a clinical diagnostic: sensitivity, long

assay times (6-12 hours), and many complex steps requiring laboratory training [89].

To overcome sensitivity limitations, we use a variant of RNA FISH develop by Raj et al.

that involves hybridization of 20-50 short, fluorescently-labeled oligonucleotide probes

to the target RNA [91]. The use of a large number of oligonucleotides amplifies the

fluorescence signal to the point where we can readily detect individual molecules of RNA

via conventional fluorescence microscopy. This technique has traditionally required 6-12

hours, but recently our lab has overcome this time requirement by developing a rapid

hybridization protocol that utilizes alcohol based fixatives and high concentrations

of oligonucleotide probe sets [106], see Chapter 2. These improvements have reduced

the assay time by orders of magnitude such that it can be performed in under five

minutes. This rapid assay time indicates great potential for applications in point of

care diagnostics, especially for viruses, which generate large numbers of viral RNA.

However, open questions remain as to how well RNA FISH can discriminate clinically

relevant viruses and whether the assay itself can be standardized and automated to

the point where someone without training could run the assay at the point of care.

In this chapter, we present a complete platform for viral RNA FISH-based rapid

diagnostics that includes viral probe design software, microfluidic automation and

image processing software (Fig. 3.1). First, we created software to design 20 base
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pair DNA oligonucleotides targeting viral RNA. We formulated two different probing

strategies: an algorithm to design probe sets that are capable of targeting many input

sequences, and an algorithm to design probe sets that differentiate input sequences

from each other. Next, the pipeline includes a microfluidic device to standardize the

rapid RNA FISH assay and to make it easily parallelizable for interrogating many viral

targets. The microfluidic device concentrates cells under a filter, thereby immobilizing

the sample for hybridization of the RNA FISH probes and subsequent washes. Finally,

we image the RNA FISH-labeled cells on chip and our image processing software

classifies the sample as infected or uninfected.

We selected respiratory viruses as a test bed for developing rapid RNA FISH-

based diagnostics because clinicians often treat upper respiratory infections (URI) in

outpatient or emergency settings where time is limited and most current tests with

rapid turnaround time have significant compromises in analytic sensitivity and/or

specificity. As URI symptoms are generally non-specific, molecular diagnostics are

especially needed for respiratory viruses because the treatments depend upon what

virus (or even bacteria) is causing the symptoms [31]. For example, influenza is

effectively treated with neuraminidase inhibitors, oseltamivir and zanamivir, while

bacterial infections are treated with antibiotics [28, 119]. In addition to providing

relief to the patient with treatment, viral diagnostics help reduce inappropriate use of

antibiotics, which is important as it can lead to the development of resistant bacteria.

We believe RNA FISH would be particularly useful for respiratory viruses because it

could provide the molecular specificity to diagnose these infections.
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Figure 3.1: RNA FISH platform rapidly determines whether samples are uninfected or
infected with a virus. The pipeline includes probe design software to generate subtype
specific probe sets or probe sets that label many viral subtypes. Next, we perform
RNA FISH on the microfluidic chip which consists of a 5 minute hybridization and 3
one minute wash steps. Finally, we image the sample directly on the chip and then
our image processing pipeline determines whether a sample is uninfected or infected.
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3.2 Probe design algorithms for discriminating

viruses

A robust platform needs to address two dichotomous challenges: the need to

differentiate between viral strains that have different clinical characteristics but similar

sequences, and the need to simultaneously detect viral strains that have highly diverse

sequences but similar clinical characteristics. We created probe design software to

address both of these possibilities.

To detect different viral strains, we developed a bioinformatic algorithm for designing

RNA FISH probes that are specific for each viral strain while exhibiting minimal cross-

targeting to other strains. The user provides the total number of DNA oligonucleotides

desired in the probe set and the maximum number of bases for which the software

will tolerate cross-targeting to another strain (here, we used 14/20). The software

then evaluates every possible 20 base-pair DNA oligonucleotide that can bind to the

viral RNA strain of interest. For each oligonucleotide, the software finds the maximum

sequence match in the other viral strains, rejecting all oligonucleotides that show a

higher degree of sequence complementarity than the user-defined limit. This ensures

that none of the oligonucleotides in the strain-specific probe set will cross-hybridize to

the other strains (Fig. 3.2, A).

We tested this probe design approach using influenza because multiple influenza

strains circulate in the human population at once and discriminating between these

strains is clinically useful for treatment and public health purposes. We designed

strain-specific influenza RNA FISH probe sets focusing on the strains predicted to be

circulating during the 2014-2015 influenza season, specifically A/California/07/2009

H1N1, A/Texas/50/2012 H3N2, and B/Brisbane/60/2008. Influenza is a RNA virus

comprised of 8 RNA “segments”, each of which gave high levels of signal by RNA
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FISH (Fig. 3.3). We targeted the hemagglutinin and nucleoprotein segments with RNA

FISH probes for these studies. To test the specificity of our final designs, we infected

Madin-Darby canine kidney (MDCK) cells with either H1N1, H3N2, or influenza B.

Twenty-four hours after infection, we fixed these cells and performed a five minute

hybridization using the RNA FISH probe sets targeting all three viruses. We found

that these probe sets specifically bound to cells infected with their corresponding

viral strain (Fig. 3.2, B). Furthermore, we found that these strain-specific probes had

minimal cross hybridization to the other influenza strains.
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Figure 3.2: Subtype-specific RNA FISH probes discriminate influenza subtypes. A.
Overview of our subtype-specific probing strategy, in which we design oligonucleotides
that only bind to one influenza subtype and do not cross hybridize to other subtypes.
B. We used this software to design probes to target three different influenza subtypes.
We then infected MDCK cells with these subtypes and performed RNA FISH with
subtype-specific probes. These three strains of influenza that were close enough in
sequence similarity to our designs that we would expect our subtype-specific probes
to bind. The RNA FISH probes produce bright fluorescent signal in the subtype to
which they are designed and do not produce signal in the other subtypes. DAPI stain
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Figure 3.3: RNA FISH for each segment of influenza virus produces bright fluorescent
signal. We designed RNA FISH probes to target the viral mRNA from all 8 segments
of influenza A. We then infected MDCK cells with influenza A/Puerto Rico/8/1934
H1N1, fixed the cells, and performed rapid RNA FISH for the viral mRNA segments.
We found that the RNA from each segment produced bright fluorescent signal. DAPI
(nuclear stain) is in blue, and RNA FISH is in white. All images are 100X magnification.
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3.3 Probe design algorithms for targeting many

viruses at once

Next, we wanted to develop an assay capable of simultaneously labeling all strains

of the same virus despite extensive sequence divergence, which requires targeting each

sequence with multiple oligonucleotides. Rhinovirus, for example, has such tremendous

sequence diversity that designing a separate pool of 10 oligonucleotides for each of the

348 sequences available on NCBI would require a total of 3480 DNA oligonucleotides,

which is prohibitive both in cost and assay complexity. Instead, we sought to create a

“pan-probe” set of greatly reduced complexity by targeting oligonucleotides to subse-

quences that exist in multiple strains. Given a sequence alignment generated by Clustal

Omega [109], our algorithm seeks to minimize the number of total oligonucleotides in

the pool while ensuring that every strain is targeted by at least 10 oligonucleotides. We

tested this software on 348 different rhinovirus sequences (including sequences from all

three subtypes A, B, and C) available on NCBI, yielding a total of 417 oligonucleotides

(Fig. 3.4, B). The maximum number of oligonucleotides targeting any one strain was

31, the minimum was our specified limit of 10, and the mean number of oligonucleotides

per strain was 19. The mean number of strains bound by an individual oligonucleotide

was 15.7. We also found one oligonucleotide targeting a region in the conserved 5'UTR

that binds to 334 of 348 rhinovirus strains.

To test the efficacy of our rhinovirus pan-probe, we infected HeLa cells with one of

four different strains of rhinovirus (rhinovirus A1, rhinovirus A16, rhinovirus A81 and

rhinovirus B1) and performed RNA FISH on each of the four infected cell lines. With

a 5 minute hybridization, we found that the pan-probe was capable of identifying virus

in each of the different infections and did not bind to uninfected cells (Fig. 3.4, C).

This experiment suggests that we can design a broadly reactive probe set to target all
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Figure 3.4: Rhinovirus pan-probe targets all rhinovirus strains. A. Overview of pan-
probe design, in which we optimize for the minimum number of oligonucleotides that
will bind to all sequences. B. We used our pan-probe software to design RNA FISH
probes that target 348 rhinovirus sequences with a minimum of 10 oligonucleotides
per strain. The results of this design are summarized by the heatmap where each
box represents a pair between an RNA FISH oligonucleotide and a viral strain. Light
blue boxes indicate that the oligonucleotide is a perfect match somewhere in the virus
and thus should bind, while dark blue boxes represent that the oligonucleotide does
not bind to that strain. C. We infected HeLa cells with different strains of rhinovirus
and performed rapid RNA FISH with the pan-probe for rhinovirus. Cells infected
with each strain had bright fluorescent signal by RNA FISH and the uninfected cells
remained dark. DAPI (nuclear stain) is in blue, and RNA FISH is in white. White
scale bar represents 5 microns.
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strains of rhinovirus without off-target binding in uninfected cells. We also used this

design software to create probe sets for adenovirus viral mRNA and found that these

probe sets gave bright fluorescent signal in infected cells (Fig. 3.5).

3.4 Design and fabrication of a microfluidic device

to concentrate samples, automate rapid RNA

FISH, and facilitate imaging

To standardize RNA FISH and facilitate its use, we built a microfluidic device

capable of automatically concentrating a dilute sample of cells and performing RNA

FISH. The microfluidic chip consists of a track-etched polycarbonate micropore filter

positioned between two micromachined sheets of adhesive mylar (Fig. 3.6). Cells

in suspension enter the device channel (width 2 mm and length 4 mm) and are

concentrated by the filter, which also serves as an imaging area for microscopy (area

7.14 mm2). The filter has a high density of 5 micron pores (106 / cm2), allowing fast

flow rates and preventing clogging due to debris. (In particular, if a few of the pores

become obstructed, the device continues to operate because fluid can pass through

the other pores in the filter.) We anticipate that these features will make the device

robust to impurities found in clinical samples such as nasal swabs or sputum [75]. The

bottom of the chip consists of a microscopy coverslip (number 1 thickness) allowing

us to directly image the cells within the device.
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Figure 3.5: RNA FISH for genomic and messenger viral RNA produces bright fluorescent
signal. We designed RNA FISH probes to target the viral mRNA and genomic RNA of
influenza A. We then infected MDCK cells with influenza A/California/7/2009 H1N1,
fixed the cells, and performed rapid RNA FISH for the different RNA. We found that
the viral RNA produced bright fluorescent signal in a different spatial distribution
from the mRNA. DAPI (nuclear stain) is in blue, genomic viral RNA is in red, and
viral mRNA is in green. All images are 100X magnification.
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To test our device, we performed RNA FISH on influenza infected MDCK cells

and imaged the cells using widefield fluorescence and bright-field microscopy and a

20X objective. We scanned the imaging area of the device to obtain a 5 by 8 grid

of images, each of which measured 665 µm by 665 µm. This resulted in images at

40 positions that we then assembled into a large panorama covering 3.3 mm by 5.3

mm of the area on the device where the cells are captured on the filter. At each

position in the grid, we acquired one bright-field image and three fluorescence images.

The fluorescence images were the RNA FISH probe signal, a dapi nuclear stain, and

green fluorescent protein (GFP). During analysis, we used the GFP signal to exclude

background autofluorescence in the cells. In some assays we included RNA FISH

probe sets for more than one virus and obtained additional images with filters that

are designed to specifically detect the probe sets (Fig. 3.10).

3.5 Image processing software and classification of

infected and uninfected samples

The next component of our platform is image processing software that aligns and

combines the images, finds cells, and classifies them to determine whether samples

are positive or negative for virus. Briefly, our image processing module assembles all

the individual images into a large panorama and segments the cell nuclei using DAPI,

which stains the nucleus (Fig. 3.9, A, steps 1-2). Next, the software calculates the

median fluorescence intensity of the RNA FISH signal for each cell (Fig. 3.9, A, step

3). By plotting a histogram of these intensities, we found a peak of intensity values

corresponding to negative cells and a peak corresponding to positive cells (Fig. 3.9, A,

step 4). We then used an intensity cutoff to designate, at the single cell level, which

cells are positive and which cells are negative and thereby calculate the percentage of
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infected cells in the sample. Finally, we apply a threshold on the percentage of infected

cells in a particular sample to determine whether the overall sample is infected or

uninfected. The reason we need this separate threshold is that every sample will have

a small number of objects with intensity above the cutoff, but these are essentially

always just autofluorescent spots or debris.

We first needed to determine an appropriate intensity cutoff for calling a cell

positive and an appropriate threshold of percent cells infected for designating an

overall sample as positive or negative. We anticipated that appropriate classification

of samples as positive or negative would require simultaneous adjustment of both of

these parameters. For instance, if the uninfected cells and infected cells have similar

fluorescence intensity, it would be impossible to pick an intensity cutoff that would

perfectly designate individual cells as uninfected or infected. In this case, the best

intensity cutoff would still designate some uninfected cells as infected, and thus we

would need to adjust the percentage infected threshold to avoid designating a negative

sample as positive. The percentage of infected cells threshold is also highly dependent

upon the total number of infected cells in the sample. For example, if we are assaying

a virus that infects every cell in the sample, we would be able to set a high threshold

percentage of infected cells to determine whether the overall sample is positive because

every positive sample would be above the threshold. By setting a high threshold,

we would avoid a situation where a few autofluorescent cells in a negative sample

would cause the sample to be incorrectly designated as positive. For these reasons, we

performed a series of experiments on our platform using both infected and uninfected

samples to establish both assay parameters. We loaded the microfluidic chip with either

influenza infected (n=10 at 0.26% and n=9 at 1.87% infected) or uninfected (n=11)

MDCK cells and performed RNA FISH for the virus. We imaged the samples on the

chip and processed these images with our software to obtain the median fluorescence
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intensity for each cell.

We used this dataset to determine an appropriate cutoff intensity value for desig-

nating an individual cell as infected or uninfected. To find the optimum, we generated

receiver-operator characteristic curves for all possible per cell intensity cutoffs by

plotting the true positive rate versus the false positive rate at various thresholds for

percentage of infected cells. Each receiver-operator curve shows how well the threshold

of percentage of cells infected serves to classify samples and is dependent upon the

particular intensity cutoff chosen. Thus, we selected the intensity cutoff that produced

the best receiver-operator curve for percentage infected and used the area under the

receiver-operator curve as the metric for making this decision (Fig. 3.9, A, step 4,

optimal cutoff = 330). From here onward, for any cell with median intensity above

330, we classified this cell as positive and for any cell below 330, we classified the

cell as negative. Further, to confirm that this experimentally determined intensity

value is consistent between infections and experiments, we separately infected another

batch of MDCK cells with influenza and performed RNA FISH using the platform.

We found that the intensity histogram of the median RNA FISH signal in infected

and uninfected cells was similar to our prior infections (Fig. 3.8).

With the cutoff intensity for calling a cell positive established, we next sought to

establish a threshold of percentage of infected cells for classifying samples as positive

or negative (Fig. 3.9, B). At an input of 1.87% infected cells, we found that choosing

a threshold between 0.22% and 0.66% yielded an essentially perfect classifier, with

an area under the curve of 1. As we lowered the percentage of infected cells in the

input down to 0.26%, the performance of our classifier deteriorated, with an area

under the curve of 0.88 and an optimal threshold of 0.21% (Fig. 3.9, B). However,

with approximately 1000 cells loaded onto the device for each run, we found that the

decline in performance was likely due to randomly sampling only uninfected cells due
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to the low percentage of infected cells (Fig. 3.8).

With our intensity cutoff established, we wanted to verify that our assay oper-

ated consistently. Thus, separate from the data set in Fig. 3.9, B, we performed 10

independent influenza RNA FISH experiments in the device with 1.53% infected cells

and determined which cells were positive by applying the RNA FISH intensity cutoff

previously established. We again considered the percentage of infected cells as the

discrimination variable and plotted a receiver operator characteristic curve by varying

this parameter. As before, the curve indicated that we are able to perfectly classify

uninfected and infected samples. Taken together, these experiments demonstrate that

our viral RNA FISH platform detects influenza and discriminates positive and negative

samples with high accuracy and reproducibility.

3.6 Multiplex viral detection by integrating spe-

cific and pan-probes in the device

One strength of RNA FISH is the ability to multiplex by using multiple probes

labeled with differently colored fluorophores on a single sample simultaneously. To

demonstrate this ability with our platform, we combined our subtype specific probes

and our pan-probes into a single assay that we can run in the device (Fig. 3.10, A).

We designed a panel using the subtype specific influenza probe sets (H3N2, H1N1, and

influenza B) and rhinovirus pan-probe sets, each labeled with different fluorophores.

We then infected MDCK cells with the different influenza strains and infected HeLa

cells with rhinovirus. We loaded each of these infected populations into a separate

microfluidic device and performed RNA FISH for all four different viruses. For this

experiment, we wanted to know if we could identify which virus was causing infection

at the single-cell level. By setting the cutoff for calling a cell positive as four standard
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deviations from the mean intensity of our uninfected control, we were able to clearly

identify cells infected with the correct virus (Fig. 3.10, B). We observed minimal off-

target labeling, ranging from 0% to 5.8% of cells incorrectly classified as having another

virus; however for each virus, the total percentage of miscalled cells was consistently

<10% of the total number of cells. Thus, we conclude that this assay is capable of

subtyping one virus, pan-probing another virus, all in the device simultaneously on a

single sample.

3.7 Viral SNP FISH detects drug resistant viruses

In addition to having different subtypes, viruses can also acquire important single

base mutations such as those that confer resistance to antiviral medications [7, 25, 70].

However, conventional RNA FISH does not have the specificity to discriminate single

bases because a one base mismatch does not create a large difference in relative

binding affinity for an entire 20 base oligonucleotide. Our lab has recently developed a

modification on RNA FISH that enables us to detect single-nucleotide polymorphisms

(SNP) in individual RNA transcripts, and we have demonstrated that it is compatible

with rapid hybridization [57, 106]. In order to improve specificity, we use a “mask”

oligonucleotide that prevents cross hybridization by magnifying the relative difference

in binding energy from a one base mismatch (Fig. 3.11, A). While the mask improves

specificity of the assay, any single oligonucleotide will still bind to many off-target sites

throughout the cell. Thus, we make a “guide” probe consisting of many fluorescently

tagged DNA oligonucleotides that brightly and specifically label individual RNA

molecules, thereby showing us where to look for SNP probes that are correctly binding

to their target. We then only consider SNP probe signal that co-localizes with the

spots from our guide probe.
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We tested whether our assay could detect a point mutation in the neuraminidase

gene (nucleotide position 823 C -> T or amino acid position H274Y in N2 numbering)

of influenza A H1N1, which was in circulation prior to 2009 [7, 25]. This mutation

alters the oseltamivir binding site in neuraminidase making it ineffective in treating

influenza (Fig. 3.11, B) [22].

To test whether our assay could reliably distinguish between drug-resistant and wild-

type influenza, we infected MDCK cells with wild-type influenza A/California/07/2009

H1N1 and with A/California/07/2009 H1N1 engineered to possess the H274Y (C823T

nucleotide) NA mutation. We then used SNP RNA FISH to classify individual tran-

scripts as wild-type or resistant mutant RNA. Qualitatively, we observed that the cells

infected with the wild-type virus had RNA classified as predominantly wild-type and

vice versa with the mutant (Fig. 3.11, C and Fig. 3.12). For each cell, we compared

the relative amounts of each RNA and calculated the ratio of resistant mutant RNA

to wild-type RNA (Fig. 3.12). We used this metric as a binary classifier to determine

which virus was infecting each cell and created a receiver operator characteristic curve.

Each point on the curve represents a potential threshold ratio of resistant mutant RNA

to wild-type RNA (Fig. 3.11, D), with points closest to the upper left-hand corner

representing thresholds that generated the most sensitive and specific classification.

Applying this analysis to our data, we found that a threshold ratio of around 50:50

mutant RNA to wild-type RNA is optimal, which is also intuitively the ideal choice

for this threshold. At this 50:50 threshold, the sensitivity of this assay for individual

cells is 0.96, and the specificity is 0.97 (false positive rate 0.03).
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3.8 Clinical testing of RNA FISH-based respira-

tory diagnostics

We designed and executed a small clinical study to evaluate the potential of RNA

FISH as a method for rapid influenza diagnostics. We recruited our subjects during the

fall 2014 through spring 2015 influenza season from patients admitted to the Children's

Hospital of Philadelphia (CHOP). We selected subjects who had a rapid respiratory

panel (which is a PCR-based test) sent as part of their clinical care to use this test

result as a gold standard for comparison to the RNA FISH. From each subject, we

collected a nasal swab and a nasopharyngeal swab for analysis. In total, we collected

samples from 7 patients who were infected with influenza as determined by the rapid

respiratory panel performed at CHOP. We also collected samples from a handful of

subjects uninfected or infected with other viruses, including rhinovirus and adenovirus.

Across all of the samples, we had only one where we found RNA FISH signal that we

believe is specific to the expected virus. This sample is from a patient infected with

adenovirus, and we performed the assay by cytospinning the sample directly onto a

coverslip followed by rapid RNA FISH (Fig. 3.13). It is still unclear why the assay

worked beautifully on this one sample, but not others. One possibility is that there was

something unique to this patient that allowed the virus to persist inside intact cells for

longer periods of time, specifically the patient could have had some immunodeficiency

or have been treated with an immunosuppressive drug. Without other clinical details

about the subject, it is challenging to interpret this result. A huge limitation of this

study was the timescales on which we collected samples for RNA FISH relative to the

rapid respiratory panel. With most subjects, there was more than 24 hours between

the two tests, which could be one of the reasons we did not see signal in these samples.

Another problem with the timing arose because routine clinical care at CHOP is to
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treat patients with suspected influenza infection with tamiflu, and therefore, all of the

influenza infected subjects in our study received tamiflu prior to their RNA FISH test.

Thus, it is possible that these subjects cleared the virus from their nasopharyngeal

epithelium before we collected the RNA FISH samples. Taken together, we believe

that these experiments are inconclusive in evaluating RNA FISH as a viable rapid

diagnostic technology as the design of the study had many limitations. To properly

evaluate this technology, it would be crucial to perform the gold standard test and

the RNA FISH-based test on the same sample or samples collected at the same time.

3.9 Discussion Flu RNA FISH

In this chapter, we outline a platform for rapid viral detection using RNA FISH,

including viral probe design software, a microfluidic device to automate RNA FISH, and

image-processing and analysis software to discriminate infected and uninfected samples.

To tailor RNA FISH to viruses, we developed probe design software that allows the

user to design subtype specific probe sets or probe sets that target many viral strains

simultaneously and tested this software using influenza and rhinovirus, respectively.

The microfluidic device provides simple, semi-automated, and standardized processing

of samples for RNA FISH. Finally, our image-processing software and statistical

framework enables automatic classification of infected or uninfected samples. We

tested our technology on influenza, rhinovirus, and adenovirus, respiratory viruses

that require rapid diagnosis in outpatient and emergency settings. Our platform

demonstrated high classification performance and the ability to target multiple viruses

simultaneously. In addition, the entire assay, including the RNA FISH and the imaging,

takes only 15 minutes. These components make rapid RNA FISH a viable technology

for viral diagnostics.
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The distinct advantages of RNA FISH-based viral diagnostics are its speed, cost

per test, and flexibility and specificity of the probe design. The two most relevant

diagnostic technologies for comparison are RT-PCR and rapid viral antigen tests. RT-

PCR is highly sensitive and specific, but requires 1-2 hours to perform in a pathology

laboratory [56]. In contrast, rapid antigen tests require 5-15 minutes and can be

performed at the point of care [56], but have variable sensitivity and specificity. We

believe that RNA FISH combines some advantages of both of these techniques. The

overall time to perform RNA FISH on the microfluidic chip is 8 minutes and the

imaging typically requires 5 minutes. However, we aim to reduce the device time and

imaging time ever further as hybridization to influenza RNA can take as little as 30

seconds (Fig. 3.14). Newer influenza diagnostics use isothermal amplification and are

significantly faster, between 15-30 minutes [21, 78]. For example, the Alere i Influenza

test takes 15 minutes and in the initial clinical studies, performed with a sensitivity

91.8-97.8% and specificity 85.6-96.3% [6]. This test was CLIA waived in 2014 and may

become widely adopted as it offers the speed of rapid antigen tests with sensitivity and

specificity approaching that of conventional RT-PCR. However, unlike RNA FISH,

this test does not discriminate between viral strains at the single base level, which

can be needed to distinguish drug resistant from drug sensitive strains [6].

A strength of RT-PCR is its sensitivity, which one study showed was able to detect

as little as 10-50 copies of virus per sample [8]. While in principle RNA FISH could

have sensitivity down to even single molecule resolution, we anticipate that another

issue is that if only very few cells are infected, it may lead to false negatives. That

said, at low levels of infection, we found that individual cells still produced bright

signal, albeit at a reduced frequency (Fig. 3.16). If this holds true in clinical samples,

it may be possible to improve the sensitivity by imaging many cells.

A clear strength of RNA FISH is the flexibility of probe design. The software in
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our platform makes it easy to generate custom designs to specifically target different

viral strains and/or detect many viral strains with one probe set. These features of

our software will allow RNA FISH to be performed on emerging viruses and viruses

that rapidly mutate, with little development time and cost. While development of

probes requires viruses to be sequenced, sequencing is often routine on viruses with a

large public health impact and costs are rapidly falling. Combining the probe design

and multiplex capabilities as well as the ease of use and low cost of the microfluidic

device, RNA FISH could also be used as a surveillance tool to monitor the spread

of viral disease. For comparison, antibody based tests, including rapid antigen tests

or ELISAs, use high affinity antibodies, the development of which can take months,

requires extensive validation, and is not possible for some targets [9]. This is a major

concern because antibody-based diagnostics may not be readily available during an

outbreak of a new virus or if a virus acquires mutations that prevent binding of the

antibody. Similar to RNA FISH, it is possible to quickly develop and deploy new

primer sets for conventional RT-PCR assays as was done with the novel H1N1 swine

flu in 2009 [87, 125, 129]. However, this level of flexibility with primer design is not yet

possible with the newer and faster isothermal amplification techniques. Thus, currently

only RNA FISH combines the ability to quickly design new probe sets with a fast

assay turnaround time.

Specificity of the probe sets is another strength of RNA FISH-based viral detection

assays. Our data demonstrates that RNA FISH can not only differentiate between

strains of virus, but also can detect a single nucleotide mutation in influenza conferring

resistance to oseltamivir. Detection of single amino acid changes is often not possible

with antibody-based diagnostics. While RT-PCR based approaches can detect point

mutations, these assays generally have greater complexity, less ease of use, and lower

sensitivity than conventional RT-PCR [82, 127].
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While still a nascent technology for clinical use, RNA FISH has the potential to

be a very cost effective detection assay. Synthesizing a new RNA FISH probe set for a

laboratory scale costs between 300−600 for 10,000 tests, which comes to a total of

3-6 cents per test, and at larger scales, the cost of the probe sets would be even lower.

Similarly, we expect the microfluidic device to be inexpensive, particularly at large

scales where it could be manufactured with injection molding. While the consumables

are cost effective, the equipment needed to image these samples is more expensive.

However, many research groups are working on developing low cost and portable

microscopes and such equipment would be necessary to use this assay at the point of

care [10, 132]. For comparison, RT-PCR also requires costly equipment including a

thermal cycler and uses enzymes which often have limited shelf-life and licensing fees

that raise their costs.

In summary, we developed a pipeline for rapid RNA FISH that demonstrated

high classification performance, multiplexing ability, and the ability to distinguish

individual strains of a virus. Our work establishes RNA FISH as a viable methodology

for rapid detection of viruses with the potential to enable point-of-care diagnostics

applications.
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Figure 3.6: Overview of device construction. We constructed the device from laser
cut pieces of acrylic, double sided adhesive mylar (thickness 100 µm, 3M company), a
polycarbonate track-etched filter (pore diameter = 5 µm, Whatman, Nuclepore), and
a number 1 coverslip. A) We assembled the device by layering the pieces as shown. B)
Photograph of the assembled device. C) Schematic of the device with cells trapped
under the filter.

42



www.manaraa.com

Figure 3.7: W e designed adenovirus pan-probes to cover adenovirus serotypes 1-7. We
then infected 293T cells with adenovirus, fixed the cells with methanol, and performed
rapid RNA FISH for the virus. Infected cells had bright signal from the RNA FISH
probes while uninfected cells remained dark. DAPI (nuclear stain) is in blue, and RNA
FISH is in white. All images are 100X magnification.
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Figure 3.8: The intensity profiles for infected and uninfected cells are reproducible
between biological replicates. We loaded the device with either influenza A/Puerto
Rico/8/1934 H1N1 infected or uninfected MDCK cells and performed RNA FISH for
the virus. We ran our image processing pipeline to extract the fluorescence intensity
signal for the viral RNA FISH in each cell and calculated the median intensity. As
expected, we found that the median intensity in most infected cells was higher than
the median intensity in most of the uninfected cells. In this biological replicate, our
intensity cutoff of 330 was again sufficient to discriminate uninfected and infected
cells.
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Figure 3.9: Automated computational analysis demonstrates high specificity and
sensitivity for viral detection. A. Overview of our image analysis software, in which
microscopy images are automatically stitched, viral RNA (vRNA) fluorescence intensity
is measured in and surrounding each DAPI-stained nucleus, and the percentage of
positive cells is calculated using a cutoff that best distinguishes devices with infected
cells from uninfected cells. B. Histogram and receiver operating characteristic curves
for devices with 1.87% and 0.26% percent infected samples. C. Optimized intensity
cutoff from A and applied to an independent dataset of uninfected devices and devices
with 1.53% infected samples. White scale bar represents 25 microns.
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Figure 3.10: Multiplex RNA FISH detects four different viruses in one test. A. We used
an RNA FISH probe cocktail including probe sets for influenza A H1N1, influenza A
H3N2, influenza B, and rhinovirus labeled with four differ fluorophores. For each virus,
we loaded the chip with infected cells and hybridized on the probe cocktail. B. We
found that the probe sets brightly labeled the correct virus with minimal fluorescence
from the probe sets for other viruses. In the analysis, we set the cutoff for calling a cell
positive as four standard deviations from the mean intensity of the uninfected control.
The numbers in the upper right-hand corner of each image indicate the percentage of
cells designated as positive for that virus. DAPI (nuclear stain) is in blue, and RNA
FISH is in white. All images are 20X magnification. White scale bar represents 25
microns.
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Figure 3.11: Viral SNP FISH detects drug resistant viruses with one base pair sequence
difference. A. We use a “mask” oligonucleotide to improve the specificity of a single
probe by magnifying the relative energy contribution from a one base mismatch. B.
We use the SNP FISH technique to detect a point mutation in the neuraminidase gene
that changes a histidine to a tyrosine, which alters the structure of neuraminidase such
that the neuraminidase inhibitor oseltamivir is less effective in treating influenza. C.
Here, we infected MDCK cells with wild-type influenza A H1N1 and mutant influenza
A H1N1 containing the oseltamivir resistance mutation. Representative images of
SNP FISH on these cells show that most RNA transcripts are correctly labeled by
the probes. DAPI (nuclear stain) is in blue, and RNA FISH is in white. Both images
are 100X magnification. White scale bar represents 5 microns. D. A receiver-operator
characteristic curve demonstrates that this assay is effective for classifying cells as
infected with wild-type or resistant mutant virus.
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Figure 3.12: Classification using our pipeline approaches the expected classification
limit of sampling from small numbers of cells. Simulated data of percent infected cells
was generated by sampling 25,000 times from a binomial distribution with probability
of trial success equal to 0.26% and number of observations equal to the experimentally
determined number of cells in each device with the 0.26% infected sample. For each of
the 25,000 simulations, we generated a receiver operating characteristic curve using
this simulated data for infected devices and experimental data for uninfected devices.
Dotted line represents the median and error bars in gray represent the upper and lower
quartile at each percent infected threshold of the receiver operating characteristic
curves. Solid black line represents experimental data from uninfected devices and
devices with 0.26% infected cells, as shown in Fig. 3.9.
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RNA FISH adenovirus

RNA FISH ribosomal RNA 

Figure 3.13: Image of rapid RNA FISH for adenovirus in an adenovirus infected
patient. We cytospun cells onto a coverslip from a nasopharyngeal sample of an
adenovirus infected patient and then performed RNA FISH directly on the coverslip.
The red shows adenovirus specific signal, and the green shows human ribosomal RNA.
Importantly, the two RNA FISH signals localize to different regions inside the cells,
demonstrating that these signals are not from non-specific binding of probe to any
target. The cell nuclei are shown in blue.
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Figure 3.14: Viral RNA molecules in cells infected with wild-type and resistant mutant
virus are classified by SNP FISH. We infected MDCK cells with wild-type influenza
A/California/07/2009 H1N1 and with A/California/07/2009 H1N1 engineered to
possess the H274Y (C823T nucleotide) NA mutation. We used SNP RNA FISH to
classify individual transcripts as wild-type or resistant mutant RNA. For each cell, we
quantified the amounts of each RNA as shown by the bar graphs. Cells infected with
wild-type virus had more wild-type RNA, and cells infected with the resistant mutant
virus had more mutant RNA.
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Figure 3.15: Hybridization of Flu RNA FISH probes requires as little as 30 seconds.
We infected MDCK cells with influenza A/Puerto Rico/8/1934 H1N1 and fixed the
cells 18 hours after infection. We then performed rapid RNA FISH using hybridizations
times of 5 minutes, 1 minute, and 30 seconds. For each sample, we used probe sets
for the haemagglutinin (HA) and nucleoprotein (NP) segments of influenza A/Puerto
Rico/8/1934 H1N1. With each of the hybridization times tested, we observed bright
fluorescent signal in infected cells. DAPI (nuclear stain) is in blue, and RNA FISH is
in white. All images are 100X magnification.
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Figure 3.16: At low levels of infection with influenza, individual cells still have bright
signal by RNA FISH, but are at low frequency. We infected MDCK cells with influenza
A/Puerto Rico/8/1934 H1N1 at multiplicity of infection 0.2, 0.02, and 0.002. Eighteen
hours after infection, we fixed the cells and then performed rapid RNA FISH using
probes for all 8 segments of influenza A/Puerto Rico/8/1934 H1N1. In the samples
with lower multiplicity of infection, we observed fewer infected cells overall, but noted
that the individual infected cells in each samples had comparable fluorescence intensity.
DAPI (nuclear stain) is in blue, and RNA FISH is in white. All images are 100X
magnification.
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Chapter 4

Single cell analysis of resistance to

targeted therapy

4.1 Background: Single cell heterogeneity in can-

cer

Biology is replete with examples of individual, seemingly identical, cells behaving

in qualitatively different ways. Generally, studies in this area have focused either on

random events in gene expression, leading to “noisy” behavior [92, 101, 102, 114]

often with biological consequences [33, 68, 88, 112, 114, 128], or rare cell variability,

which is typically ascribed to genetic differences-the mutational origins of cancer being

a salient example of the latter. However, there are many biological phenomena in

which the behavior of rare cells differs from the rest of the population without any

genetic underpinning, such as the induction of pluripotent stem cells via expression of

particular pluripotency-associated transcription factors [115], cancer stem cells [42],

and bacterial persistence [2, 32].

The development of resistance is a prime example of biologically important behavior

in rare cells in which a genetic basis is often assumed but not always demonstrated.

In most resistance phenomena, a drug or other selective agent is applied to kill or
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otherwise inhibit an unwanted cell population, but a small number of cells evade the

drug activity and continue to proliferate, ultimately generating a resistant population.

The rarity of these cells is often taken as evidence for a genetic basis to resistance,

but there are examples of non-genetic mechanisms, such as bacterial persistence and

both short-[19, 32, 38, 86, 96, 111, 122] and long-term resistance to targeted therapies

in cancer [50, 85, 86, 107]. Yet, despite their importance, the underpinnings of such

non-genetic rare-cell resistance behavior remains mysterious, often because of technical

limitations in measuring non-genetic differences in large numbers of individual cells;

indeed, there have to our knowledge been only very few observations to date of rare

fluctuations in gene expression [29, 45, 79], let alone connected to resistant phenotypes.

A paradigmatic example of resistance in cancer is melanoma, a disease which

often results from mutations to the BRAF protein leading to uncontrolled cellular

proliferation [24]. Treatment with the drug vemurafenib, an inhibitor of the mutated

V600E BRAF protein, nearly eradicates the tumors [16, 37], but these therapies

rarely result in a permanent cure because a small subset of cancer cells develop

resistance to the drug and cause the disease to relapse [124]. Drug resistance in the

bulk relapsed tumor is well characterized and can be due to several factors including

re-activation of the pathway through increased activity of upstream or downstream

effectors, activation of bypass pathways, and alternative splicing altering drug binding

[39, 76, 108]. Often, these mechanisms are associated with a genetic mutation, and so

the assumption is that at the moment the drug is applied, Darwinian selection of rare

cells with these mutations in the original tumor population lead to tumor regrowth

[26, 44, 52, 80, 85, 93, 121]. Yet, there is some evidence both in melanoma and other

cancers that non-genetic heterogeneity may play a role in why some cells respond to

drug while others do not, in the short term due to gene expression “noise” [19, 111]

and on longer timescales with subpopulations of cells that go into a slow-cycling drug
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tolerant state [98, 99, 107].

Here, we decompose the process of developing resistance to targeted therapies into

two distinct phases. The first “priming” phase determines which rare individual cells

within the population proliferate even when treated with drug. We used Luria-Delbrck

fluctuation analysis [36, 66, 118] to show that the pre-resistant state is transient,

and developed a highly-multiplexed single molecule RNA FISH assay to measure

expression levels in many tens of thousands of individual cells to show that the primed

state is characterized by rare-cell expression of high levels of resistance marker genes.

We then show that the addition of drug itself induces a reprogramming phase, in

which these primed cells transform into stably resistant cells. This reprogramming

occurs in at least two steps, the first of which is dedifferentiation, and the second

of which involves the activation of new signaling pathways. Our results provide a

framework for understanding transient and epigenetic contributions to the development

of resistance and suggest a mechanism by which to understand the efficacy of “drug

holiday” treatment regimens [23]. Further, we found that many of the same set of

genes show similar rare-cell expression patterns in many different cell types, suggesting

the existence of a general rare-cell transcriptional program.

4.2 Heritability of drug resistance

Patient-derived melanoma cells grown in culture provide a model for examining

drug resistance. When we cultured cells isolated from two different patients (WM9,

WM983B) under normal conditions, they proliferated readily. Upon administering

a fractional killing dose of vemurafenib (1 µM, Fig. 4.1), the vast majority of cells

stopped growing, but sporadic colonies of resistant cells would form that proliferated

even in the presence of drug. (The signature of these surviving cells resembles those of
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resistant cells in patients; Fig. 4.2) To examine the population dynamics of resistance

at the single cell level, we performed large-scale time-lapse imaging of around 18,000

cells (at the time of drug application) over the course of 28 days. We began our

time-lapse 5 days before the addition of drug to build a family tree, then added drug

and watched for the formation of resistance clusters of cells (the low frequency of

resistance necessitated the large scale of imaging, as we expected roughly 9 resistant

colonies total in the entire imaging field). We found that drug resistant colonies derived

from single cells (Supplementary video 1) or low numbers of cells (Supplementary

video 2), and indeed, even sister cells can have different phenotypes in response to

drug (Fig. 4.3). The cells destined to become resistant proliferated normally before the

addition of drug, suggesting that they are not in a dormant “persister” cell state [3].

Given the observation that resistant colonies come from single cells, we wanted

to know what is different in the cells that develop into the resistant colonies. We

considered two possible models for resistance: a genetic mutational model and a

transient non-heritable model (Fig. 4.4, A). The primary difference between the

mutational and transient models is that in the former “strongly heritable” (i.e., genetic

or epigenetic) model, once a cell transitions to the resistant state, the cell cannot

revert (at least not in a relevant time frame), whereas in the transient model, cells can

easily transition between a pre-resistant and non-resistant state, with the pre-resistant

cells being defined as those that will ultimately give rise to resistant colonies upon

addition of drug (Fig. 4.4, A). To differentiate these two hypotheses, we used the

“fluctuation analysis” framework developed by Luria and Delbrck in 1943 to study

bacterial resistance with T1 phage [66]. First, we isolated a single cell from the parental

cell line to minimize any existing genetic heterogeneity in the cell line. We expanded

this cell for only around 7-8 divisions to minimize heterogeneity and then started

several single cell cultures from this small pool. We expanded each of these cultures
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Figure 4.1: Treatment of WM9 melanoma cells with vemurafenib induces cell death.
A. Percent viability of WM9 cells treated with vemurafenib for 6 days (MTS assay). B.
Annexin-V staining in WM9 cells after 3 days of treatment with vemurafenib measured
by flow cytometry. The percentage of cells that are positive for annexin-v is labeled
on the plots. C. Western blot for pMEK, pERK, and pS6 after 3 days of treatment
with vemurafenib. D. Western blot for caspase-3 and PARP after 3 days treatment
with vemurafenib. This demonstrates that WM9 cells are highly responsive to BRAF
inhibitor treatment with inhibition of signaling downstream of BRAF and apoptosis
of sensitive cells.
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Figure 4.2: RNA sequencing of patient tumors pre-treatment and post-treatment
from Sun et al. Nature 2014 shows changes in gene expression for many of the same
resistance marker genes found in WM9 cells. Heatmap depicts the log2 fold change
for each gene. Samples are normalized by patient. The genes displayed here are the
same panel of genes used for RNA FISH in WM9 cells in Fig. 4.14, A. This analysis
demonstrates that there is significant overlap between the transcriptional signature of
resistance in WM9 cells and resistant patient samples.
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Figure 4.3: Time-lapse imaging reveals that two sister cells can have different phe-
notypes in response to vemurafenib. Twenty-eight day time-lapse images of WM9
cells before and then after application of cytostatic dose of vemurafenib. Sister cells
are labeled in the images. There were approximately 18,000 cells at the time that we
applied drug, and a total of 9 resistant colonies formed on the culture dish. We observed
instances in which two sister cells exhibited divergent phenotypes, for instance, one
would respond to drug while the other would continue growing, eventually forming
a resistant colony. These results suggested the possibility of a non-genetic resistance
mechanism, although do not constitute proof.

59



www.manaraa.com

through 20 doubling events, yielding around 1 million cells, after which we added drug

to the cells and counted the number of resistant colonies that formed in each culture

(Fig. 4.4, A). As per Luria and Delbrck, if the transition to resistance is heritable

(such as a DNA mutation or epigenetic change), then mutations would sometimes

occur early during the expansion phase before adding drug, leading to some cultures

with very large numbers of resistant colonies. If, however, the pre-resistant state is a

transient one, then we would expect all cells in any given culture to have a roughly

equal chance of forming a resistant colony upon adding drug, greatly reducing the

possibility of cultures with large numbers of resistant colonies.

Upon performing this experiment, we found that the lack of outliers in the distribu-

tion of number of resistant colonies was incompatible with a strongly heritable resistant

phenotype. Simulations of the Luria-Delbrck distribution confirmed the statistical

significance of our results with a p-value of 0.0005 and 0.0012 in WM9 cells (biological

replicates with 43 and 29 cultures, respectively) and p-value 0.0395 for WM983B

cells (WM9 data in Fig. 4.4, B, see Methods for details and Fig. 4.5 and Fig. 4.6

for WM983B data and a more complete statistical analysis). Note that in the purely

transient case, one would expect roughly a Poisson distribution of colony counts, but

we observed a somewhat super-Poisson distribution. There are multiple experimen-

tal parameters that may have introduced additional variance, including variation in

plating efficiency between clones, differences in clone proliferation rates prior to drug

treatment, and variation in cell motility between clones causing differences in the

confluency throughout the dish, as well as the possibility that the pre-resistant state

is heritable over small numbers of divisions, but not longer.
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Figure 4.4: Resistance to vemurafenib is not heritable, and pre-existing pre-resistant
cells are marked by very high expression of resistance genes. A. Schematic depicting
alternative models for heritability of the resistant phenotype and the outcome of the
Luria-Delbruck fluctuation analysis given each model. Representative results from
simulations shown below. B. Observed distributions of number of resistant colonies in
WM9 (biological replicates with sample size = 43 and 29 clones).
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Figure 4.5: Luria Delbruck fluctuation analysis demonstrates that WM983B cells
develop drug resistance through a non-heritable mechanism. A. Histogram of the
number of resistant colonies from the Luria Delbruck fluctuation analysis in WM983B
with a total of 20 clones. B. We simulated the strongly heritable hypothesis for a range
of different mutation rates. At each mutation rate, we ran the simulation 10,000 times.
We used the parameters specific to this experiment for the WM983B cell line, including
the total number of divisions and subsampling of the cultures prior to drug treatment.
Each column of plots assumes a different mutation rate which is labeled above. The
first row contains histograms of the median number of colonies from each simulation,
the second row contains histograms of the Fano factor from each simulation, and the
third row contains histograms of the coefficient of variation (CV) from each simulation.
In each plot, the value corresponding to our experimental findings are labeled by the
vertical line. The p-value to reject the strongly heritable hypothesis based upon the
Fano factor or CV at each mutation rate is below the plot.
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Figure 4.6: Luria Delbruck fluctuation analysis demonstrates that WM9 cells develop
drug resistance through a non-heritable mechanism. We performed the Luria-Delbruck
fluctuation analysis twice with the WM9 cell line. We simulated the strongly heritable
hypothesis for a range of different mutation rates. At each mutation rate, we ran
the simulation 10,000 times. We used the parameters specific to this experiment
for the WM9 cell line, including the total number of divisions and subsampling of
the cultures prior to drug treatment. The plots in panels a and b are from separate
biological replicates with a total of 43 and 29 clones. Each column of plots assumes a
different mutation rate which is labeled above. The first row contains histograms of the
median number of colonies from each simulation, the second row contains histograms
of the Fano factor from each simulation, and the third row contains histograms of the
coefficient of variation (CV) from each simulation. In each plot, the value corresponding
to our experimental findings are labeled by the vertical line. The p-value to reject the
strongly heritable hypothesis based upon the Fano factor or CV at each mutation rate
is below the plot.
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4.3 RNA sequencing of drug resistance

After establishing that pre-resistance to vemurafenib arises in a small, transient

subpopulation of melanoma cells, we wondered whether single-cell gene expression

differences could underlie the phenotypic differences present in the pre-resistant cells.

Since the pre-resistant cells make up only a small portion of the entire population, we

expected that population-based gene expression analysis (via RNA sequencing) would

not be able to identify the signature of this sub-population. Instead, we hypothesized

that some aspects of the signature of stable resistance may already be present in a

small, privileged subset of the non-resistant population. To test this hypothesis, we

first determined the transcriptional program associated with stable drug resistance in

WM9 and WM983B melanoma cells (Fig. 4.7, A and Fig. 4.8, A) via RNA-sequencing.

In WM9 and WM983B, we identified a set of marker genes (1456 and 1316 genes,

respectively) whose expression significantly increased only in resistant cells and not

just upon administration of drug (p-value <10-5 and log2 fold change > 0.5; Fig.

4.8, B). Reassuringly, we found that many well-known markers of drug resistance

were specifically associated with resistance, including signaling molecules such as

WNT5A [1, 81], AXL [74] and EGFR [113], growth factors such as PDGFRβ [76], and

transcription factors such as JUN [94] (Fig. 4.8, C); furthermore, these signatures are

similar to those found in patient samples (Fig. 4.2).

4.4 Single molecule RNA FISH of untreated

melanoma cells

Although the expression of these markers was low on average in the untreated

population, there could still be rare individual cells with significant expression of these
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Figure 4.7: Pre-resistant cells are marked by very high expression of resistance genes.
A. Schematic of transcriptional profiling experiments. We harvested cells for analysis
before adding drug, 48 hours after drug application and then on stably resistant
cultures. The heatmap depicts the “marker gene” signature used for follow up analysis
in which expression is significantly increased in the resistant cells relative to the
untreated. B. Computational representation of single-cell RNA FISH data from 8672
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cell as indicated by the color scale bar. Scale bar on computational representation of
image data is 1 mm. Scale bar on image is 10 µm. C. Computational representation of
single-cell RNA FISH data shown for AXL from 1966 cells after 4 weeks of treatment
with 1 µM vemurafenib.
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Figure 4.8: RNA-sequencing identifies genes whose expression is specific to resistance.
A. Schematic of transcriptional profiling experiments. We harvested cells for analysis
before drug, 48 hours after drug application and then on stably resistant cultures. B.
Heatmaps depicting expression changes across all differentially expressed genes. Each
row represents a separate RNA-sequencing experiment taken from a different Luria-
Delbruck subclone. Resistant cultures obtained from subculturing resistant colonies.
All genes shown have a greater than 1.4 fold change and adjusted p-value less than
10-5 in at least one experimental condition. Color represents log2 of fold change across
the conditions. C. Fold changes in expression in drug response (blue; fold change of
48 hours in drug vs. no drug) and resistance (red; fold change of resistant cells vs.
no drug) for WM9 cell line. Bolded gene names are the genes that were selected for
analysis by RNA FISH in WM9 cells 4.14. P-values for differential expression analysis
are indicated by asterisks as labeled below the plots.
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genes. To look for such a population of cells, we needed a strategy to measure with

high sensitivity the expression of many resistance genes in many thousands of cells.

Thus, we used single molecule RNA FISH and high-throughput fluorescence imaging

to capture the expression of a panel of resistance genes in thousands of individual

melanoma cells before drug treatment. Surprisingly, we found a subpopulations of

cells that expressed very high levels of mRNA resistance genes, while all the other

cells in culture expressed very little or none. By counting the molecules of RNA in

each cell, we found a population of rare cells (frequencies ranging from 1:50 to 1:500)

that express high levels of genes from the resistance program before any treatment

with vemurafenib (Fig. 4.7 and Fig. 4.9), and the expression levels in these rare cells

was often comparable to that of fully resistant cells (Fig. 4.10, with the exception

of NGFR and PDGFRβ). Note that these cells remained outliers in their expression

levels even after normalization by GAPDH (Fig. 4.11), suggesting that this rare cell

high expression is not a consequence of global extrinsic factors like cellular volume[83].

As expected, after treatment with vemurafenib for 4 weeks, resistant colonies also

expressed high levels of these marker genes (Fig. 4.7, C), though, even within a single

resistant colony, there was still remarkable heterogeneity in expression.

4.5 Rare “high” expressing cells and drug resis-

tance

The existence of rare cells that express high levels of resistance markers in the

population raise the possibility that these cells are the ones that will continue to

proliferate despite addition of drug. However, because our single cell RNA FISH

analysis required fixing the cells, it was impossible to use the RNA FISH signals

to track the cells over time. Thus, we took advantage of the fact that EGFR was
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Figure 4.10: In an untreated population of cells, rare cells express resistance marker
genes at much higher levels than the population average, sometimes at levels similar
to the drug resistant state. Boxplots showing the distribution of mRNA counts per cell
for untreated WM9 cells and resistant WM9 cells. The untreated data set is the same
data as shown in Fig. ??, B. For the resistant WM9 cells, we performed iterative RNA
FISH with the same panel of genes as in Fig. ??, B. The untreated data set contains
a total of 8672 cells and the resistant data set contains a total of 4082 cells. Asterisks
next to the gene names indicates that the max expression of the untreated sample
is greater than or equal to the median of the resistant sample, demonstrating that
for these 7 of 9 genes, the “high” cells have expression levels potentially equivalent
to resistant cells. However, we also point out that given that the sampling of high
expressing cells in the untreated samples is low, it is difficult to explicitly compare the
distributions to say that the expression in the rare high-expressing cells is equivalent
to that in stably resistant cells.
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Figure 4.11: Rare cells expressing sporadic but high levels of resistance markers are
still present when each gene is normalized by GAPDH mRNA counts. Each histogram
shows the distribution of GAPDH normalized counts for a particular jackpot gene.
The counts for each gene in each cells has been divided by the GAPDH counts in that
same cell. This accounts for any volume-dependent differences between cells. Cells
that had GAPDH counts less than 50 were dropped from this analysis (these cells
were infrequent and gave abnormally high numbers after normalization, thus were
dropped). With these cells removed, the data set contains a total of 8477 cells.
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one of the genes that displayed the sporadic expression pattern and was also a cell

surface receptor for which highly specific antibodies are available, thus allowing us

to isolate and track these rare cells over time. Specifically, we stained live WM9

melanoma cells with antibodies targeting EGFR and performed fluorescence-activated

cell sorting (FACS) to isolate the top 0.02-0.2% of the EGFR-stained melanoma cells

(i.e., EGFR-high cells). After sorting, we waited one day then immediately applied

vemurafenib for 3 weeks, and then used a nuclear stain and high-throughput imaging

to look for proliferating colonies of resistant cells (Fig. 4.12, A). Strikingly, the EGFR-

high population produced 7.9±0.92 (standard deviation) fold more resistant colonies

than the EGFR-mixed population (no sorting, thus similar to the initial population,

but run through the cell sorting machine as a control) and that these colonies were

on average 2.4 fold larger (4.12, A and Fig. 4.13A). This demonstrated that cells

exhibiting sporadic expression of EGFR are indeed far more likely to be resistant to

vemurafenib treatment, and thus highly enriched for pre-resistant cells. We used RNA

FISH to verify that expression of EGFR and other resistance genes (Fig. 4.13, B) was

higher in the EGFR-High sorted population. Also, the EGFR-High population also had

lower expression of markers including SOX10 and MITF (Fig. 4.13, C), as expected

from the previously described relationships between EGFR/SOX10, AXL/MITF and

WNT5A/MITF/SOX10 [1, 27, 74, 113, 126]. Together, these results show that it is

the rare cells within the untreated population with high levels of EGFR that are far

more likely to become resistant once drug is applied.
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Figure 4.12: EGFR-high cells create more resistant colonies. A. Experimental scheme:
we used fluorescence assisted cell sorting of cells labeled with an EGFR-targeting
antibody to isolate an EGFR-high cell population and a mixed control, after which
we applied vemurafenib. Below is an image of a two-well chamber of EGFR-mix vs.
EGFR-high sorted cells after 3 weeks of vemurafenib treatment. Numbers indicate the
number of cells in each resistant colony. Total number of resistant colonies is labeled
below each well. B. Barplot of the ratio of number of colonies in the EGFR-high well
vs. the control mixed well when cells were allowed to grow in culture without drug
for varying lengths of time (1 week, 2 weeks, 3 weeks) and applied vemurafenib after
the delay. Bars indicate the mean ratio from 3 biological replicates and the error bars
represent the standard error of the mean.
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Figure 4.13: Sorting for EGFR-high cells enriches for pre-resistant cells and for cells
that express resistance marker genes. A. Quantification of 3 biological replicates of
the experiment depicted in Fig. 4.7, D. B and C. Histograms showing the transcript
abundance in untreated and FACS sorted EGFR-high and mixed cell populations.
The green histograms are from the EGFR-high population and the gray histograms
are the mixed population. The percentage of high-expressing cells are labeled on
each plot. Panel B shows resistance marker genes EGFR, WNT5A, SERPINE1, and
PDGFRβ, and panel C shows melanocyte development genes, SOX10 and MITF,
and a housekeeping gene, GAPDH. D. Histograms of percentage of cells that have
high expression of a particular number of genes simultaneously. The left histogram is
from the FACS sorted EGFR-high cells, and the right histogram is from the mixed
population.
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4.6 Heritability of the resistance phenotype in flow

sorted EGFR-high cells

Given that the pre-resistant cells are highly enriched in the EGFR-high subpop-

ulation, our Luria-Delbrck results showing that the pre-resistant state is transient

would imply that the degree of resistance in this subpopulation would revert to the

population average over time in culture without drug. To verify this effect, we stained

WM9 melanoma cells with antibodies targeting EGFR and performed FACS to isolate

the top 0.02-0.2% of the population. We then allowed the cells to grow in culture

without drug for varying lengths of time (1 week, 2 weeks, 3 weeks) and applied

vemurafenib after the delay. We found that the ratio of colonies in the EGFR high to

the EGFR mixed population significantly decreased from 13.4±10.6 to 1.17±0.47 after

1 week of growth prior to drug treatment, thus demonstrating that the pre-resistant

cell state is not heritable on this timescale (Fig. 4.12, B. We did notice, however, that

even at the longest time point in culture, 3 weeks, the number of resistant colonies in

the EGFR high and the mixed population never became completely equal, indicating

that the enrichment for pre-resistant cells did not go away completely, possibly due to

differences in paracrine signaling between the cultures magnified once the EGFR-high

cells are enriched and brought together in close proximity. Together, these results

demonstrate that there is a small subpopulation of pre-resistant cells that continue

proliferating when treated with drug, and that this cellular state is transient and

associated with the rare expression of resistance marker genes.
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4.7 Iterative RNA FISH for expression of 19 genes

in the same cells

The finding that rare cells can express high levels of a gene while the remainder of the

population had low expression was surprising, and so we wondered how widespread the

phenomenon was. We selected a panel of 19 genes for which we performed RNA FISH

on up to 40,000 single cells (Fig. 4.14, A). Our panel included a number of housekeeping

genes, master regulators of melanocyte differentiation and various resistance markers.

In order to measure expression of all of these genes simultaneously in individual cells,

we developed a method for iterative RNA FISH using multiple cycles of hybridization:

first, we hybridized a set of oligonucleotide probes targeting up to 4 different RNA

species, performed large-scale imaging, then chemically stripped these probes off of

the sample, then repeated hybridization in the same cells, re-imaged the same cells

and so on for 5 rounds [65]. Using computational image alignment, we then assigned

expression levels up to 19 genes in our panel to individual cells. (We found that levels

of expression were generally comparable whether we probed a gene in the first or last

round, showing that iterative hybridization produced reliable results (Fig. 4.15). This

provided us with expression levels for these genes in a large number of cells.

4.8 Quantification of ”jackpot” heterogeneity with

Gini coefficients

To quantify the “jackpot” type of heterogeneity we saw for AXL, EGFR and

NGFR in WM9 cells, we used a metric called the Gini coefficient, which was initially

developed by sociologist Corrado Gini to describe income inequality, but recently

applied to single cell gene expression data [53]. In our context, a Gini coefficient of 0
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Figure 4.14: Multiplex single cell RNA FISH reveals rare cells with sporadic but
intense expression of resistance markers across multiple cell lines and tissue models.
A. Schematic of the high-throughput imaging and reiterative hybridization scheme,
enabling measurement of 19 genes simultaneously in single cells. B. Gini coefficients
capture rare cell population heterogeneity in single-cell RNA FISH data. Gini coeffi-
cients plotted for 4 melanoma cell lines (WM9, WM983B, SK-MEL-28, and 1205Lu),
primary melanocytes, and 4 other types of cancer cell lines (SH-SY5Y, PC-9, MDA-MB-
231, and HeLa). C. We used fluorescence activated cell sorting to isolate NGFR-high
cells in WM9 and SK-MEL-28 cell lines, after which we treated with vemurafenib for
3 weeks and then imaged to assay for resistant colonies. Individual resistant colonies
are circled and labeled with the number of cells in each colony.
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Figure 4.15: RNA counts are consistent whether a gene is probed on the first cycle of
iterative RNA FISH or subsequent cycles. Boxplots summarizing RNA FISH mRNA
counts for each gene in the 19 gene panel (shown in Fig. 4.14, A). We probed each
gene from the panel in resistant WM9 cells without performing iterative hybridizations
(note that we used resistant cells because the generally higher expression levels allowed
for more robust comparisons). We then performed iterative RNA FISH with all the
probes and compared the total mRNA counts. We took image z-stacks of each sample
and captured a total 15-25 cells per sample. Expression levels were similar between
the first round of hybridization and all subsequent hybridization cycles. The color of
the boxplot indicates the hybridization cycle during which we used each probe. The
p-value for differences in RNA counts between the cycles are labeled above each plot.
Some variability may be due to sampling with genes that have low and/or highly
variable expression, and in these instances, we expect some differences in the two count
distributions. There is some loss for some genes in later cycles, but we do not believe
that affects our qualitative findings of rare, high-expressing cells.
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represents perfect equality where all cells have the same number of RNA molecules,

while a Gini coefficient of 1 represents perfect inequality where one cells expresses all

of the RNA molecules for a particular gene and the others express none (Fig. 4.14,

B). On this scale, the resistance genes for which rare cells express high levels of their

RNA would have a large Gini coefficient. Performing this analysis on the distributions

of 23 genes (this includes the 19 genes in our panel plus 4 additional control genes)

from WM9 melanoma cells, we found that 13 genes had a Gini coefficient greater than

0.5, indicating a large degree of inequality in these distributions. As expected, we

found that all of our housekeeping genes had Gini coefficients below this 0.5 cutoff

and that genes with expected single cell heterogeneity (cell cycle marker CCNA2 and

slow-cycling cell marker KDM5B [98, 99]) had Gini coefficients slightly above this

cutoff (Fig. 4.14, B).

4.9 Rare-cell high expression behavior in other cell

lines

Having established that WM9 melanoma cells exhibit rare-cell expression of these

genes, we wanted to know if this phenomenon extended to other melanoma cell lines,

to primary cells, or even to other types of cancer. Thus, we first tested a subset of our

gene panel in three other melanoma cells lines (WM983B, SK-MEL-28, and 1205Lu)

and found that all three of these cell lines harbor rare single cells with much higher

levels of expression, creating highly skewed distributions with Gini coefficients as high

as 0.82 (SERPINE2 in WM983B) (Fig. 4.14, B). We next tested primary melanocytes

and similarly found rare cells expressing high levels of these genes, demonstrating that

this sporadic high expression is not due to some alteration specific to cancer. To test

for these rare cells in other types of cancer, we applied a panel of 8 genes (7 resistance
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markers and 1 housekeeping gene) to 4 cell lines, each derived from a different type

of cancer (SH-SY5Y, PC-9, MDA-MB-231, HeLa), and found that each of these cell

lines had some genes with very high Gini coefficients (Fig. 4.14, B). Of note, every

cell line we tested exhibited this behavior for at least some of the genes in our panel,

suggesting that the rare-cell expression of these genes is not unique to melanoma.

4.10 Rare-cell high expression behavior in tissues

We next wanted to know if rare-cell expression manifested in intact tissues. To

evaluate this possibility, we used melanoma tumors from patient-derived xenografts

and performed RNA FISH for a subset of the marker genes. By imaging a total of

7791 cells, we found a similar rare cell population expressing CYR61 and LOXL2

with Gini coefficients 0.78 and 0.65, respectively (Fig. 4.16). We also found similarly

high Gini coefficients in patient-derived xenograft tissue samples created from other

melanoma patients (Fig. 4.17).

4.11 NGFR-high cells and drug resistance

Because sorting WM9 cells based upon EGFR staining enriched for pre-resistant

cells, we wanted to know if other genes in our resistance panel would similarly enrich for

pre-resistant cells in WM9 and other cell lines. To test this, we stained live WM9, SK-

MEL-28, and WM983B cell lines with fluorescently tagged NGFR antibodies, performed

sorting for the top 1-5% of the population, and then applied 1µM vemurafenib. In

WM9 and SK-MEL-28, we found that the NGFR high population of cells was more

resistant to the drug (Fig. 4.14, C, replicates in Fig. 4.18, C and D), however, in

WM983B, we found that the high population was not more drug resistant (Fig. 4.18,

A). Consistent with this result, bulk RNA sequencing of WM983b nonresistant and
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Figure 4.16: “Jackpot” gene expression is present in patient-derived xenografts. Com-
putational representation of CYR61 mRNA expression in patient-derived xenografts.
Each cell is represented by a dot on this plot and the color of the dot represents the
number of RNA in that particular cell as indicated by the color scale bar. Image shows
an example cell with high expression of CYR61. Scale bar on computational repre-
sentation of the data is 500µm. Scale bar on RNA FISH image is 10µm. Histograms
show full distribution of mRNA expression for CYR61 and LOXL2 and are labeled
with their Gini coefficients.
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xenografts. Each cell is represented by a dot on this plot and the color of the dot
represents the number of RNA in that particular cell as indicated by the color scale
bar. B. Histograms show full distribution of mRNA expression for CYR61 and LOXL2
and are labeled with their Gini coefficients. C. Example images of high expression of
CYR61.
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resistant cells revealed that NGFR is not a resistance marker (Fig. 4.18, B), confirming

that this enrichment for pre-resistant cells is specific to resistance genes.

4.12 Coordination between genes in sporadic high

expression events

Given that many of the resistance markers we examined individually showed rare

expression patterns and that multiple of them marked pre-resistant cells, we then

wondered if these sporadic expression events were coordinated between genes in single

cells, and if so, whether this coordination relates to the pre-resistant cellular state. At

one extreme, the expression of individual genes could be completely probabilistic and

uncoordinated, suggesting that sporadic expression of any one particular gene does not

reflect any particular cellular state per se. On the other hand, if the population consisted

of two clearly distinct cellular subtypes (e.g., pre-resistant and non-resistant), then one

would expect to observe a very strong coordination in sporadic expression between

the genes in single cells - i.e., “clustering”. In principle, an intermediate between these

possibilities could exist as well, in which there is some degree of coordination, but

with the coordination showing more of a “continuum” behavior rather than clustering

into distinct groups.

To discriminate between these possibilities, we took advantage of the fact that our

multiplex RNA FISH assay provided us with mRNA counts for all 19 genes in each

individual cell, allowing us to measure coordination in the expression of these genes in

single cells. We first examined the pairwise relationships between each of the resistance

genes. We set a threshold for labeling each cell as a “high” or “low” expressing for

each gene such that the frequencies of “high expressing” cell ranged from 1:50 to

1:500 (example thresholds for AXL and VEGFC in Fig. 4.19, A). We then determined
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Figure 4.18: Sorting for NGFR-high cells in WM9 and SK-MEL-28 cell lines enriches
for pre-resistant cells, but does not enrich for pre-resistance in WM983B. A. We used
fluorescence activated cell sorting to isolate NGFR-high cells in WM983B, after which
we treated with vemurafenib and then imaged to assay for resistant colonies. Individual
resistant colonies are circled and labeled with the number of cells in each colony. B.
As described in Fig. 4.7, A and Fig. 4.8, we performed RNA sequencing of untreated
WM983B cells, WM983B cells after 48 hours of vemurafenib, and WM983B cells from
resistant colonies. Boxplots show the reads per million for NGFR in each of the three
conditions. C. Replicates of the data in Fig. 4.14, C. These RNA-seq results show that
NGFR is not a resistance marker for WM983B, which may explain why sorting by
NGFR does not appear to enrich for resistant cells in that cell line.
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the odds ratio between the high and low states for each gene and found that the

odds ratios between resistance genes ranged from 4 to 142, which strongly argues

against the completely random scenario as these genes have much higher co-expression

than expected (Fig. 4.19, B). Moreover, we found two general groups of co-expressing

genes: the first consisted of housekeeping genes and melanocyte differentiation factors

(GAPDH, SOX10, MITF ), and the second consisting of resistance marker genes (JUN,

WNT5A, NRG1, etc.) (Fig. 4.19, B). These patterns did not depend on the specific

thresholds chosen for determining whether a particular gene was on or off (Fig. 4.20).

Principal component analyses of co-expressing genes, both with this panel and another

panel of 4 genes including two housekeeping and two resistance markers, revealed two

axes of co-variation, one corresponding to housekeeping genes and one corresponding

to resistance markers, thus showing that the co-variation shown in the resistance

markers is not merely reporting on generic correlations between any pair of genes

(Figs. 4.21 and 4.22).

4.13 Double sorting for EGFR-high and NGFR-

high cells

Using these thresholds for identifying high expressing cells, it is clear that the

frequency of expression for any one of the resistance marker genes is much higher

than the frequency of resistance (1:50 to 1:500 for any one marker gene versus 1:2000

for resistance). However, given that cells expressing multiple marker genes exist, we

hypothesized that these cells may be the ones that ultimately go on to form the

resistant colony. To test this possibility, we stained live WM9 cells with antibodies

labeling both NGFR and EGFR and performed FACS to isolate four populations: cells

negative for both stains, cells positive for EGFR only, cells positive for NGFR only,

84



www.manaraa.com

A B Log
2
(odds ratio) for co-expression of two markers

0

No cells

above threshold

in both genes

2

4

6

log
2

(odds ratio)

resistance 

marker 

genes

housekeeping 

and melanocyte

genes

S
O

X
1

0

M
IT

F

G
A

P
D

H

C
C

N
A

2

V
G

F

R
U

N
X

2

P
D

G
F

R
B

N
R

G
1

E
G

F
R

L
O

X
L

2

F
G

F
R

1

S
E

R
P

IN
E

1

N
G

F
R

W
N

T
5

A

J
U

N

A
X

L

V
E

G
F

C

SOX10

MITF

GAPDH

CCNA2

VGF

RUNX2

PDGFRB

NRG1

EGFR

LOXL2

FGFR1

SERPINE1

NGFR

WNT5A

JUN

AXL

VEGFC

L
o

w

H
ig

h

A
X

L

VEGFC

Low

High

8433

125 47

67

odds ratio=47

C
EGFR and NGFR

high cells

0.3%

NGFR high cells

4.6%

EGFR high cells

0.3%Negative

cells

100 101 102 103 104 105

EGFR antibody signal

100

101

102

103

104

105

N
G

F
R

 a
n

ti
b

o
d

y
 s

ig
n

a
l

170

170

108

165

44

60

97

106

162

97
47

100

85

50

201

135

175

60

104
88

226

161

5748

96

61

56

124
119

66
73

117
85

117

47
136

84

10956

97

140

163
82

30

54
45

61

88

25581
65

131

88

70

115

76
95

66

113

7561

NGFR high

Negative EGFR high

EGFR and NGFR 

high

4-way cell sorting

2 weeks 

vemurafenib

2 resistant colonies 11 resistant colonies

12 resistant colonies 36 resistant colonies

0

100

200

300

400

0 50 100
number of VEGFC mRNA

n
u

m
b

e
r 

o
f 
A

X
L

 m
R

N
A

VEGFC threshold

A
X

L
 t
h

re
s
h

o
ld

Figure 4.19: Rare cell expression of resistance marker genes is coordinated between
genes such that an unexpectedly high number of cells express multiple markers. A.
Scatter plot of the number of AXL vs. VEGFC mRNA in individual WM9 melanoma
cells. Dotted lines represent the threshold for calling a cell “high” or “low” for each
marker. Inset shows the number of cells falling into each quadrant of the plot and
is labeled with the odds ratio for co-expression. B. Heatmap shows the odds ratio
for co-expression between all pairs of genes. Dark gray boxes label pairs where there
were zero cells with counts high expression threshold for both genes. C. Experimental
scheme: we co-stained for EGFR and NGFR and then sorted the 4 populations: cells
negative for both stains, cells positive for EGFR only, cells positive for NGFR only, and
cells positive for both EGFR and NGFR. After sorting, we applied 1µM vemurafenib
for 2 weeks and then imaged the samples. Individual resistant colonies are circled in
the images and the number of cells in each colony is labeled. The total number of
resistant colonies in the entire sample is labeled below each image.
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Figure 4.20: Odds ratio between high and low states does not change significantly
with different thresholds. A. Heatmap shows the odds ratio for co-expression between
all pairs of genes. Dark gray boxes label pairs where there were zero cells with counts
high expression threshold for both genes. The heatmap in the middle has the same
thresholds for designating cells as “high” or “low” as used in Fig. 4.19, B. Meanwhile,
the heatmap on the left shows the same analysis with the thresholds set to 1/2X
of the their value in 4.19, B and the heatmap on the right shows this analysis with
thresholds set to twice their value in Fig. 4.19, B. When the thresholds are at 1/2X,
the result is very similar to that in Fig. 4.19, B. However, increasing the threshold by
2X leads to many gene pairs that do not have any cells that are “high” for both genes
(indicated by the dark gray boxes). B. Heatmap showing odds ratios for WM9 data
after 4 weeks in drug.
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Figure 4.21: Housekeeping genes correlate more with each other than with resistance
markers and vice-versa. We performed RNA FISH on 8672 non-drugged cells with
probes targeting LOXL2 and AXL (both of which exhibit rare-cell expression) and
LMNA and GAPDH, both of which are control genes not associated with resistance.
A. We then performed principal component analysis to determine which genes covary
with which other genes. We transformed the vector representing the expression levels
of each cell into the space spanned by the first two principal components. Arrows
represent transformations of unit vectors of the specified gene into this same space. We
observed two rough axes of variability, one corresponding to the GAPDH and LMNA
and the other to AXL and LOXL2. Thus, these results show that there is substantial
covariation in housekeeping genes and in resistance markers, but that these two axes
of variation separate. B. Same plot as in panel a, but with the RNA FISH data shown
for WM9 in Fig. 4.14, B. C. Pairwise correlations between the genes in A.
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Figure 4.22: Control genes do not show as much enrichment in the EGFR-high
subpopulation as the pre-resistance marker genes. We sorted by EGFR antibody to
isolate the EGFR-high subpopulation of cells and then performed RNA sequencing on
these populations as well as an EGFR-mixed population. Dot plots show the log2 fold
change in gene expression for a set of control genes and a set of resistance marker genes.
Each dot represents a separate biological replicate (paired EGFR-high/EGFR-mixed).
The horizontal line at y=0 represents no change in the EGFR-high samples relative
to the EGFR-mix. For the resistance marker genes (EGFR, AXL, and NGFR), there
is significantly more expression in the EGFR-high sample, while the control genes do
not show large differences, showing that they do not correlate with the expression of
the resistance markers.
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Figure 4.23: Boxplots summarize the single-cell RNA FISH counts for EGFR and
NGFR in flow sorted populations shown in Fig. 4.19, C. These results show that sorting
the high populations indeed enriches for EGFR and NGFR mRNA, thus validating
the sort procedure. Furthermore, it shows that the double sorting does not further
enrich for either EGFR or NGFR mRNA alone, showing that the effects of the double
sort do not arise from a further enrichment of either EGFR or NGFR-high cells per
se, but rather the combination of both in the same cell.

and cells positive for both EGFR and NGFR. After sorting, we applied vemurafenib

for 2 weeks and then imaged the four different cultures. We found that both the EGFR

only and NGFR only samples formed more resistant colonies than the negative sample

(with 11 and 12 versus 2 in the negative), but that the double positive sample formed

the most resistant colonies with 36 total (Fig. 4.19, C). We confirmed by RNA FISH

that these sorted populations have the expected expression of EGFR and NGFR, thus

ensuring that the FACS isolated cells are the same populations that we observed by

RNA FISH (Fig. 4.23). This finding shows that the cells with high expression for more

than one marker gene are the ones that develop into the resistant colonies.
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These results further demonstrate that high expression of any one pre-resistant

marker does not perfectly correspond to being resistant, suggesting that while there is

clearly coordination between markers, the gene expression signature itself may not

separate the cells into two clearly distinct states. To explore this possibility further,

we next searched for higher order correlations in expression of these resistance markers.

A priori, however, finding such cells with high expression of multiple markers would

seem implausible if the expression occurred independently of each other. Given a

probability of high expression of 1% for a particular marker gene, the probability of a

cell expressing 6 of these markers would be essentially zero (0.016 = 10-12). We found

a surprisingly large number of cell expressing high levels of multiple markers, with 13

cells out of 8672 expressing 6 markers simultaneously and 2 expressing as many as

8 markers simultaneously (example images in Fig. 4.24, histograms of higher order

coordination Fig. 4.25) - notably, these numbers are close to the expected frequency of

resistant colonies. These numbers suggest a strong degree of interdependence between

the transcriptional activity of these genes, but a cluster analysis showed that there are

no readily discernible clusters, suggesting that the intermediate “continuum” model

may fit our data most readily. This continuum is not completely random, and the

correlations can reveal potential network structure between the genes interrogated

(Fig. 4.26).

4.14 RNA sequencing of resistance reprogram-

ming

Taken together, our results thus far show that jackpot cells with high levels of

transcription of resistance markers are the ones that will proliferate when treated with

drug, and that this pre-resistant cellular state is transient. At the same time, however,
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Figure 4.24: Example images of two cells with high expression of 6 resistance marker
genes (AXL,EGFR,NRG1,WNT5A, JUN,FGFR1 ), normal expression of housekeeping
gene GAPDH, and low expression of melanocyte gene SOX10. RNA FISH signal is
white, and cell nuclei are shown in blue. Scale bar is 10µm.
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Figure 4.25: There are subpopulations of cells that have high expression of multiple
resistance marker genes. Histogram of number/fraction of cells that have high expression
for a particular number of genes simultaneously, both before, immediately after and
then 4 weeks after application of drug. We found that immediately after adding drug,
there was a large general decrease in the amount of high-expressing cells, but a few
cells remained that expressed several marker genes at once. This suggests, but does
not prove, that these multi-expressing cells may be the pre-resistant cells.
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Figure 4.26: Phixer analysis reveals the network structure of rare-cell expression. A.
Histogram of the φ-mixing coefficient (edge strength) for all edges in the inferred
network for melanoma undrugged cancer cells. To illustrate the network we select
the 34 most strongest edges (non-shaded portion), and this corresponds to selecting
edges with φ ≥ 0.18. B. Gene interactions obtained using the phixer algorithm applied
to the single-cell RNA FISH data from cancer cells. Each directed edge and its
corresponding strength (φ-mixing coefficient) quantifies the effect of an upstream gene
on the probability of rare-cell expression of a downstream gene.
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our time-lapse videos clearly show that once drug treatment begins, the clusters of

resistant cells appear to grow stably. This leads to a conceptual paradox: if the resistant

state is transient, then how would a colony of resistant cells form? Wouldn't the colony

disintegrate as the cells transition back to being non-resistant? Our observations

indicate that colonies do not disintegrate, and indeed, the transcriptome profile of

resistant cells given a “drug holiday” appear to remain at least partially stable for 3-5

weeks (Fig. 4.8, B), indicating that the cells are at that point maintaining the resistance

phenotype. One possible resolution to this paradox is to postulate two separate stage of

resistance. The first, demonstrated above, is the generation of transiently pre-resistant

cells, characterized by rare but intense transcriptional events. The next stage, we

hypothesize, occurs beginning with the addition of the drug itself, which induces a

transition from the pre-resistant state to a stably resistant state, thus “burning in”

the resistant phenotype through a presumably epigenetic change. Such a two-staged

process would be in many ways reminiscent of cellular reprogramming during the

induction of pluripotent stem cells [43].

To determine whether the addition of drug led to a reprogramming of the pre-

resistant cells, we took advantage of the ability to sort cells by EGFR protein expression

levels to isolate pre-resistant cells from the bulk population before adding drug and

then their progeny at time points (1 week and 4 weeks) after the addition of drug (Fig.

4.27, A). In a pure selection model, one would expect the profile of pre-resistant cells

to be largely the same as the resistant cells; however, in the reprogramming model,

one would expect a much more progressive transformation from the pre-resistant

cells to the stably resistant state. To discriminate these possibilities, we profiled the

transcriptomes of the EGFR-high cells before and after addition of drug, focusing on

the set of resistance markers identified by our bulk RNA-sequencing (Fig. 4.7, A), and

determined the percentage activation of each resistance gene (using the original EGFR-
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mix population as a baseline) throughout the time course. Interestingly, we found that

the pre-resistant cells only express a very small fraction (72 of 1456) of the resistance

transcriptome near the full level of activation in resistance (Fig. 4.27, B). (As expected,

8 of the 10 genes for which we observed sporadic expression patterns were more highly

expressed in the EGFR-High cells than in the EGFR-mixed population; Fig. 4.28)

This finding is consistent with our conclusion that the pre-resistant state is a relatively

shallow departure from the non-resistant state, and supports the reprogramming model.

Furthermore, we confirmed that the EGFR-high cells were proliferating based upon

their relative expression of cell cycle genes CCNA2 and CCND1 (Fig. 4.28) (which is

a requirement for the Luria-Delbruck fluctuation analysis in Fig. 4.4). We also note

that the EGFR-high cell subpopulation is molecularly distinct from the slow-cycling

subpopulations that express other markers such as KDM5A and KDM5B [98, 107]

(Fig. 4.29).

In stark contrast, after adding drug, the percentage of resistance genes expressed

was much higher and increased over time. We found that by week 1 in drug 600

of the 1456 total resistance genes were activated to >80% and that by week 4 this

activation increased to 966 of 1456 resistance genes, thus demonstrating a progressive

transformation of the transcriptome in resistant cells as they become stably resistant.

To validate these expression patterns directly in single cells, we performed RNA FISH

on TXNRD1, a gene that is not overexpressed in the EGFR-high cells before adding

drug, but increases 5.7 and 8.5 fold at weeks 1 and 4, respectively. We found that

this gene also expressed in a sporadic pattern before the addition of drug, but that

this sporadic expression pattern did not correlate strongly with EGFR and instead

correlated more strongly with GAPDH, suggesting that while variable, its expression

is not associated with the expression of pre-resistance markers, as expected based on

the RNA-seq (Fig. 4.30).
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Figure 4.27: Addition of vemurafenib induces a stepwise reprogramming of pre-resistant
cells into a stably-resistant state. A. Experimental design: we sorted EGFR-high cells
to at different time points in vemurafenib treatment (untreated, 1 week, and 4 weeks)
and performed RNA sequencing and ATAC sequencing on the sorted populations. B.
Bar plots showing percentage activation for three example resistance genes through the
development of stable resistance. Activation index is defined as log2 of the fold change
divided by the total log2 fold change for the gene between the bulk non-resistant
and bulk stably resistant populations. Each gene activates at a different stage. C.
Pie charts showing the percentage of the resistance transcriptome that has become
activated at different levels.
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Figure 4.28: RNA-sequencing on FACS sorted EGFR high cells shows that sporadically
expressing genes are more highly expressed in EGFR-high cells than the mixed
population. Dot plot comparing the gene expression differences between EGFR-high
and the mixed cell population. The y-axis shows the log2 fold change between the
EGFR-high and mix cells, and the x-axis shows the different time points in drug
(untreated, 1 week, and 4 weeks). Dots that fall above the zero line represent samples
that have higher expression in the EGFR-high cells and dots that fall below the
zero line represent samples that have lower expression in the EGFR-high cells. The
genes summarized here are the same panel of genes used for multiplex RNA FISH in
Fig. 4.19. Each dot represents a separate biological replicate. There are 3 biological
replicates for the untreated condition, 2 biological replicates for week 1, and 2 biological
replicates for week 4. We found that 8 of the 10 genes that exhibited jackpot behavior
exhibited increased expression in the EGFR-high cells (EGFR, AXL, NGFR, WNT5A,
SERPINE1, JUN, LOXL2 and PDGFRβ).
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Figure 4.29: EGFR-high cells are proliferating based upon expression of cell cycle
markers, and they do not express markers of slow-cycling subpopulations. A. Barplot
showing the fraction of max expression for cell cycle genes (CCNA2 and CCND1 )
across EGFR-high, EGFR-mixed, and EGFR-negative populations at each time point.
B. Barplot showing the fraction of max expression for KDM5A and KDM5B, which are
both markers of slow-cycling subpopulations in melanoma (Roesch et al. 2010; Sharma
et al. 2010), across EGFR-high, EGFR-mixed, and EGFR-negative populations at each
time point. Note that we only collected an EGFR-negative sample at 4 weeks because
this was the only time point where the EGFR-high cells represented a significant
portion of the total mixed population (>1%).
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Figure 4.30: Single-cell RNA FISH shows that burn-in marker gene, TXNRD1, has
variable expression in untreated cells, but that this expression does not correlate
with resistance marker genes, EGFR and LOXL2. We performed RNA FISH on
21,314 untreated WM9 melanoma cells using probes for the burn-in gene TXNRD1,
resistance marker genes EGFR and LOXL2, and the housekeeping gene GAPDH. A.
We performed principal component analysis to determine which genes covary with
which other genes. We transformed the vector representing the expression levels of each
cell into the space spanned by the first two principal components. Arrows represent
transformations of unit vectors of the specified gene into this same space. We observed
two rough axes of variability, one corresponding to the GAPDH and the burn-in
gene TXNRD1 and the other to the resistance genes EGFR and LOXL2. Thus, these
results show that burn-in gene TXNRD1 has substantial covariation with housekeeping
gene GAPDH while the resistance markers have their own separate axis of variation.
b. Odds ratio analysis (as in Fig. 3b) on the same data shown in A. C. Pairwise
correlations between the genes. D. EGFR-sort RNA-seq data from Fig. 4.27, B showing
that TXNRD1 is not enriched in the untreated EGFR-high cells, but then has higher
expression in the EGFR-high subpopulation at 1 week and 4 weeks in drug. Together,
these experiments validate the EGFR-sort RNA-seq experiments, and provide a more
detailed analysis for TXNRD1.
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4.15 ATAC sequencing of resistance reprogram-

ming

Given the progressive and broad-ranging changes in the transcriptome in the

post-drug stage of resistance, we wondered what gene regulatory changes underpinned

these changes. To measure these regulatory differences, we used a genome-wide assay

for transposase-accessible chromatin using sequencing (ATAC-seq) [11], which uses the

Tn5 transposase to identify accessible regions of DNA (Fig. 4.27, C). This technique

is thought to identify regions of DNA to which transcription factors are binding,

and so we reasoned that regions that showed differential binding would be regions

of DNA involved in the regulatory process governing the epigenetic reprogramming

occurring during the post-drug phase of resistance. First, we looked for changes in

putative transcription factor occupancy (measured by presence of accessible chromatin

by ATAC-seq) between non-resistant and pre-resistant cells, with ATAC-seq revealing

only 33 total differentially hypersensitive sites (Fig. 4.31, A). These results are again

consistent with our RNA-sequencing findings in showing that the transient pre-drug

pre-resistant state is a relatively shallow deviation from the non-resistant state.

Just as our RNA-sequencing data revealed a large, progressive change in the

resistant cell transcriptomes upon addition of drug, ATAC-seq revealed similarly

large changes in the pattern of transcription factor occupancy. We categorized these

changes into gains and losses of hypersensitive sites, which are thought to correspond

to increased and decreased transcription factor occupancy, respectively. We found that

between the untreated cells and those in drug for 4 weeks, the cells lost 1787 and

gained 9143 hypersensitive sites (Fig. 4.31, A), demonstrating a broad reprogramming

of the cell. We then decomposed these hypersensitive site changes into hypersensitive

site gains and losses over the first week in drug and then subsequent changes from
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1 week of drug treatment to 4 weeks. Surprisingly, we found that the predominant

change during the first week was the loss of hypersensitive sites (1999 lost vs. 431

gained), after which the change from 1 week to 4 weeks in drug was a gain of new

hypersensitive sites (28 lost vs. 8577 gained). In order to identify the dominant factors

involved in mediating these gains and losses, we searched for transcription factor

binding motifs within these peaks, finding that much of the peak loss at one week of

drug treatment resulted from loss of SOX10 binding, whereas the gain of peaks at

four weeks resulted from the activation of TEAD and Jun/AP-1 activity, along with

other signaling pathways (Fig. 4.31, B). We note that SOX10 is a transcription factor

known to regulate neural crest embryonic development in cells such as melanocytes,

and that TEAD activity is known to play a role in melanoma phenotype [50, 62, 123].

Thus, our results suggest that the post-drug burning-in stage of resistance consists of

an early dedifferentiation stage followed by the activation of new signaling pathways

as the cells progress towards becoming stably resistant.

4.16 Functional role of EGFR signaling in resis-

tance

Both our ATAC-seq analysis and other studies [113, 123] have shown that gain of

EGFR signaling are important in the development of vemurafenib resistance. Given our

findings that the development of resistance consists of the two phases (pre-resistance

followed by epigenetic reprogramming), we asked in what stage(s) of resistance EGFR

is acting. To perturb EGFR activity in the pre-resistance phase, we applied lapatinib

(an inhibitor of EGFR and HER2) for 3 days and then treated with vemurafenib while

removing lapatinib, and found that the number of resistant colonies did not change

with this pre-treatment. However, when we applied lapatinib in conjunction with
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Figure 4.31: ATAC-seq reveals step-wise changes in genome accessibility during the
development of vemurafenib resistance. A. ATAC-seq analysis to identify differentially
hypersensitive sites between the sorted cell populations; example tracks shown dis-
playing hypersensitive site loss and gain from one of two replicates. B. Quantification
of peak loss and gain for the conditions shown in A; comparisons made as annotated
on figure. We called a peak lost or gained if we could identify the peak in one of the
conditions and saw a change in read count in the peak of 4 fold or higher across both
replicates. We found motifs in the sets of peaks gained and lost by using HOMER dif-
ferential peak calling tools and identified potential transcription factors using HOMER
de novo motif tools.
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vemurafenib, we found that the number of resistant colonies decreased remarkably

from a mean of 10.5 to 0.5 colonies per well (Fig. 4.32, A). Adding lapatinib alone to

melanoma cells did not cause significant cell death or affect cellular proliferation (Fig.

4.32, A). Thus, we concluded that EGFR signaling is critical in the post-drug burn-in

phases of resistance and plays a role in the epigenetic reprogramming of pre-resistant

cells into stably resistant cells.

4.17 Discussion

Here, we have demonstrated that resistance in melanoma, at the single cell level,

can occur through non-genetic, non-heritable mechanisms, specifically through rare,

coordinated, transient transcription of a small subset of resistance markers. We further

showed that these pre-resistant cells transform into stably resistant cells via epigenetic

reprogramming. This latter reprogramming phase consists of at least two steps: first,

a dedifferentiation stage, and then the activation of new signaling pathways. In many

ways, the development of resistance in these cells is analogous to the reprogramming

of somatic cells into induced pluripotent stem cells, in which a rare, stochastically

determined subpopulation ultimately undergoes deterministic changes to give rise to

the transformed cellular state[12, 43]. This multi-phasic acquisition of the resistant

phenotype can in many ways resemble the more conventional Darwinian/mutational

picture of resistance, but is fundamentally different in nature because the cells do not

need to possess a DNA mutation to become resistant.

The pre-resistant cellular state we have identified here is seemingly distinct from

other non-genetic drug-resistance mechanisms. In many other cancer studies, the focus

has been more on the immediate aftermath of drug treatment, in which some fraction

of cells survive; typically, though, the percentage of surviving cells is not particularly
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small [84, 86, 111]. While there are cases in which rare cells survive application of

drug or other insult, most involve relatively dormant cells, such as bacterial persisters

[3] and slow-cycling cells in melanoma[98, 99]. Here, we have documented a state that

occurs rarely, but is proliferative and otherwise not outwardly distinct from the rest

of the population, perhaps most conceptually similar to those found in Sharma et al.

[107]. Whether such cell states are important for resistance in other cancers remains

to be seen.

We were surprised to find that the pre-resistant state was characterized by rare,

sporadic expression of a set of resistance marker genes. These extreme levels of

transcriptional variability are qualitatively different than most documented examples of

cell-to-cell variability in gene expression, much of which may be explained by differences

in cell volume [83] or other factors [4]. Indeed, researchers have long hypothesized this

“jackpot” rare-cell expression pattern, but examples had proven difficult to find [13].

Intriguingly, a recent study analyzing melanoma tissue via single cell RNA-sequencing

found rare-cell expression of many of the same genes that we found in our study [117]

(Fig. 4.33), although the genetic and microenvironmental variability in tumor tissue

makes it difficult to directly infer that the variable expression of these genes is due to

probabilistic transcription that is non-genetic or environmentally controlled.

Beyond melanoma, the observation that many of these same genes expressing in

this manner across a variety of unrelated cell types (including primary, non-cancerous

melanocytes) suggests the existence of a rare-cell expression program that may exist

in normal, healthy cells and is co-opted in the development of resistance. Single cell

expression profiling in cells in culture [77] and in tissue [117] may help reveal the full

extent of this behavior.

Our results elucidate the epigenetic changes associated with the transformation

from a transient pre-resistant to a stably drug-resistant phenotype, which consists of
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dedifferentiation followed by a transcriptional rewiring. This rewiring may be possible

due to the high degree of cellular plasticity that is intrinsic to melanoma and believed

to underlie observations of phenotype switching between proliferative and invasive

states [47, 48, 81]. Interestingly, it is the application of the drug itself that induces this

progression. One question is whether it is the specific targets of the drug itself that are

important for this effect, or whether it results from a more general response to cellular

stress. Either way, further elucidation of this process may open up new avenues for

therapeutic targeting [95]. Our results show several classes of genes associated with this

process, including, intriguingly, JUN and targets of JUN/AP-1 signaling [34, 97] as well

as several genes involved in cytoskeletal remodeling. Given the obvious morphological

differences between resistant and nonresistant cells, we wonder whether cytoskeletal

reconfiguration is not just associated with epigenetic transformation, but actually the

proximal cause of the transformation to the resistant phenotype [14, 20, 46, 54]. More

definitive studies involving manipulation of cell shape may help disentangle cause from

consequence in this case.

Melanoma may serve as proof-of-principle for studies in drug resistance. While

we use inhibition of mutated BRAF as prime example of highly specific therapy, the

phenomenon may be more general. These rare-high expressing cells will likely survive

inhibitors of other signaling molecules such as PI3K and AKT or even DNA-damaging

chemotherapeutic drugs that are notorious for inducing acquired resistance in the

malignant cells. Potentially, these cells have high mitochondrial metabolic rates [100],

which will likely require that we need to do systematic drug development studies to

effectively target these rare cell populations. Likely, we will need to develop treatment

strategies to eliminate two populations, both the bulk of the tumor and the highly

drug resistant cells.

Our Luria-Delbrck fluctuation analysis, along with our other results, provide strong
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evidence that, at the single cell level, the determination of whether a cell will give

rise to a resistant colony does not rely on a heritable difference (in particular, a DNA

mutation). We emphasize, however, that our results do not preclude the possibility

that genetics can play an important role in resistance, and there are of course many

instances in which specific secondary mutations are associated with resistance in

melanoma. For instance, in the vemurafenib phase II clinical trial, four of 20 patients

acquired mutations in MEK and three of 13 acquired mutations in NRAS that were not

present prior to treatment [120]. However, transient and genetic causes of resistance

are not mutually exclusive. It is possible that transient sources of resistance provide

an initial form of resistance that allows a small subpopulation of tumor cells to survive

long enough for them to subsequently acquire secondary mutations, which then drive

the reformation of the tumor mass. Delineating the relative contributions of both

mechanisms at different stages of resistance will be important, especially because these

mechanisms can influence population dynamics in different ways. For instance, one

implication of our work is that a brief application of drug (rather than a continuous

dose, as is the current standard of care) may be preferable because it would prevent the

relatively long burn-in reprogramming process from going to completion, thus leaving

cells in a transient state in which they can revert back over time and thus become

sensitive to further drug treatment [59, 60]. Such interval dosing regimens have shown

some promise, and our findings may further inform such strategies [23, 103, 113].
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Appendix A

Experimental and computational

methods

A.1 Materials and methods for Turbo RNA FISH

A.1.1 Cell culture

We cultured A549 cells (ATCC CCL-185), HeLa cells [30], and primary human

foreskin fibroblasts (ATCC CRL-2097) in Dulbecco's modified Eagle's medium with

Glutamax (DMEM, Invitrogen) supplemented with 10% fetal bovine serum and peni-

cillin/streptomyocin. WM983b cells [5] were cultured in melanoma isolation media

containing 80% MCDB153, 18% Leibovitz's L-15, 2% fetal bovine serum, 1.68mM

CaCl2, and penicillin/streptomyocin.

A.1.2 Formaldehyde fixation

We fixed cells for 10 minutes in 4% formaldehyde/10% formalin in 1X phosphate

buffered saline solution at room temperature. Following fixation, we washed cells twice

with 1X phosphate buffer solution and then permeabilized the cells with 70% ethanol

and stored them at 4°C for at least overnight.
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A.1.3 Alcohol fixation

We fixed cells in pre-chilled ethanol or methanol (-20°C) for 10 minutes. Following

fixation, we proceeded immediately to RNA FISH or Turbo RNA FISH.

A.1.4 RNA FISH

To perform RNA FISH, we followed the protocol in Raj et al. Nat Meth 2008

[91] with minor modifications. We pre-washed cells with wash buffer containing 10%

formamide and 2X saline-sodium citrate (SSC). We then performed hybridization by

adding 1 µL of probe to 50 µL of hybridization buffer consisting of 10% formamide,

2X SSC, and 10% dextran sulfate (w/v). For the overnight hybridizations, the final

probe concentrations was 3.5 µM for TOP2A probe and 4.9 µM for TBCB probe.

We hybridized the samples overnight in a humidified chamber at 37°C. Following

hybridization, we washed the samples twice with wash buffer for 30 minutes at 37°C.

We then imaged the samples in 2X SSC.

A.1.5 Turbo RNA FISH

For Turbo RNA FISH, we removed the alcohol from previously fixed samples and

performed hybridization with 5 µL of hybridization buffer containing 71 µM TOP2A

probe and 98 µM TBCB probe (unless otherwise specified), 10% formamide, 2X SSC,

and 10% dextran sulfate (w/v). We hybridized the samples for 5 minutes (unless

otherwise specified) on a covered hot plate at 37°C. Following hybridization, we washed

the samples three times for one minute at 37°C with prewarmed wash buffer. We then

imaged the samples in 2X SSC.
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A.1.6 Turbo iceFISH

For Turbo iceFISH, we followed the protocol of Levesque and Raj Nat Meth 2013

[58] but with methanol fixed cells, higher probe concentration and shorter hybridization

times. We used the probes described in that publication to “paint” chromosome 19,

with the chromosome paint labeled with Alexa 594. We performed iceFISH in HeLa

cells, which have two normal copies of chromosome 19 and two derivative chromosomes,

t(13;19) and t(6;19).

A.1.7 Turbo SNP FISH

For Turbo SNP FISH, we followed the protocol of Levesque et al. Nat Meth

2013 [57] but with with methanol fixed cells, higher probe concentration and shorter

hybridization times. Notably, we also performed a 20-minute post-fix in formaldehyde

after the hybridization to prevent probes from dissociating. We used the probes

described in that publication to detect the BRAF V600E mutation, as well as one that

targets a portion of BRAF that is the same on both alleles as a control. Our image

analysis was the same as that described in the Levesque et al. Nat Meth 2013 [57]

manuscript. We performed all the experiments in WM983b cells (gift of Meenhard

Herlyn, Wistar Institute), which are heterozygous for the V600E mutation.

A.1.8 Image acquisition

We imaged all samples on a Nikon Ti-E inverted fluorescence microscope using

a 100X Plan-Apo objective (numerical aperture of 1.43) and a cooled CCD camera

(Andor iKon 934). We sequentially acquired three-dimensional stacks of fluorescence

images in four different fluorescence channels using filter sets for DAPI, Cy3, Alexa

594, and Atto 647N. Our exposure times ranged from 2 to 3 s for most of the dyes
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except for DAPI, for which we used 50 ms exposures. The spacing between consecutive

planes in our stacks was 0.3 µm. The filter sets we used were 31000v2 (Chroma), 41028

(Chroma), SP102v1 (Chroma), a custom set from Omega as described previously [89],

SP104v2 (Chroma) and SP105 (Chroma) for DAPI, Atto 488, Cy3, Alexa 594, Atto

647N and Atto 700, respectively.

A.1.9 Image analysis and quantification

After imaging, we then put our data through an image analysis pipeline for semi-

automated spot recognition. We implemented the analysis pipeline in MATLAB.

Briefly, our method for analysis involves running the images through a linear filter

designed to enhance spots around the size of those we observe, then finding all regional

maxima within the filtered image, and then counting the number of regional maxima

below a variety of thresholds [91]. We then manually determine a threshold where the

number of regional maxima changes the least upon changing the threshold (i.e., the

number of spots is least sensitive to moving the threshold). To quantify sensitivity

of the threshold, we took the derivative of the logarithm of the graph of the number

of regional maxima below varying thresholds. We smoothed the derivative before

quantifying to avoid noise due to local variations in the graph.

A.2 Materials and methods for Flu RNA FISH

A.2.1 Influenza viruses

We created viruses expressing the A/California/7/2009 HA and NA or A/Puerto

Rico/8/1934 HA and NA via reverse genetics as previously described [72]. All of our

reverse genetics-based viruses possessed internal A/Puerto Rico/8/1934 genes. We

used QuickChange site-directed mutagenesis kits (Stratagene, La Jolla, CA, USA)
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to introduce the D225G HA mutation into the A/California/7/2009 HA to increase

virus yields [61]. We also used site-directed mutagenesis to introduce the H274Y NA

mutation. All reverse genetics-derived viruses were propagated in 10 day old fertilized

chicken eggs.

The A/Victoria/361/2011 strain was obtained from Influenza Reagent Resource,

Influenza Division, WHO Collaborating Center for Surveillance, Epidemiology and

Control of Influenza, CDC, Atlanta, GA, USA. The B/Florida/4/2006 strain was

obtained from BEI Resources, American Type Culture Collection, Manassas, VA,

USA. A/Victoria/361/2011 was propagated on Madin-Darby canine kidney cells and

B/Florida/4/2006 was propagated in 10 day old fertilized chicken eggs.

For each virus, we used Sanger sequencing to verify that additional mutations did

not arise during viral propagation.

A.2.2 Influenza infections

We plated Madin-Darby canine kidney (MDCK) cells on chambered coverglasses

(1e5 cells/well) or T75 flasks (1.8e6 cells/well) 18 hours before infections. Immediately

before infection, we washed the cells two times with serum-free media. We then added

the viruses to the cell layer at multiplicity of infection of 2-10 in serum-free media with

L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK)-treated trypsin, HEPES,

and gentamicin. Twenty four hours after infection, we fixed cells in 100% methanol.

A.2.3 Rhinovirus infections

We purchased the following rhinovirus strains from ATCC: Human rhinovirus 16

(VR-258), Human rhinovirus 1A (VR-1559), Human rhinovirus 81 (VR-1191), and

Human rhinovirus 1B (VR-1645).
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We grew HeLa cells in T25 flasks to 70% confluency in Dulbecco?s modified Eagle?s

medium with Glutamax (DMEM, Invitrogen) supplemented with 10% fetal bovine

serum (FBS), penicillin/streptomycin, 20 mM HEPES, and 40 mM magnesium chloride.

We diluted rhinovirus stock at least 1:10 in 2 mL PBS with 0.5% bovine serum albumin.

We then washed cells with PBS and added diluted virus. After incubating the cells

at 34°C for 1-2 hours, we removed the virus containing medium and added DMEM

supplemented with 2% FBS, pen/strep, 20 mM HEPES, and 40 mM MgCl2. We

continued to incubate the cells at 34°C for 16-20 hours, after which we washed the

cells in PBS and fixed the cells in ice-cold methanol for 10 minutes.

A.2.4 Adenovirus infections

We grew 293T cells in T25 flasks to 70% confluency in DMEM supplemented with

10% FBS and penicillin/streptomycin (D10F). We washed the cells once with PBS

and added 1 mL Ad5∆E1-GFP virus diluted 1:10 in DMEM. We then incubated the

cells at 37°C for 1 hour, after which we removed the virus containing medium and

added fresh D10F. We continued to incubate the cells at 37°C for 16-20 hours, and

then washed the cells in PBS and fixed the cells in ice-cold methanol for 10 minutes.

A.2.5 Device fabrication

We laser cut a piece of clear acrylic for the top layer and two pieces of double sided

Mylar tape (thickness = 100 µm, 3M Company) to serve as channel layers (Fig. 3.1

and Fig. 3.6). Between the channel layers, we placed a polycarbonate track-etched

film (pore diameter = 5 µm, Whatman, Nuclepore). We assembled the device in a top

down fashion by aligning the corners of the acrylic with the laser cut tape and pressing

firmly to remove bubbles trapped in the adhesive layer. We placed the track-etched
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film on top of the second tape layer and then pressed the first two layers onto the

tape, thereby sandwiching the filter. We next attached the bottom layer which is a #1

cover glass (24 mm x 50 mm) to allow for imaging of samples directly on the chip. At

the inlet to the device, we secured a laser-cut donut shaped piece of acrylic to create

a reservoir for holding liquids. Lastly, we inserted medical tubing into the outlet of

the device and secured the tubing with superglue to allow us to pull liquid through

the device using a syringe and syringe pump. This allows us to precisely control the

flow rate during experimentation.

A.2.6 Rapid RNA FISH on the microfluidic device

We used a pre-programmed syringe pump to automate the fluid handling in all

of the following steps and mounted the microfluidic device onto a 37°C hotplate. For

each sample, we fixed the cells in methanol prior to loading on the microfluidic device.

After fixation, we loaded 200 µL of the cells in methanol into the fluid reservoir of

the device and then pulled the cells onto the device at a flow rate of 100 µL/min.

Next, we performed a pre-wash step by loading 200 µL of wash buffer containing 10%

formamide and 2X SCC and pulling the solution through the device with the syringe

pump. To prepare our hybridization solution, we put 1 µL of each viral RNA FISH

probe (at stock concentrations ranging from 1288 ng/µL to 5800 ng/µL) into 500 µL

of hybridization buffer containing 10% formamide, 2X SCC, and 10% dextran sulfate

(w/v). We loaded 80 µL of hybridization solution into the device reservoir and pulled

20 µL onto the sample. We stopped flow through the pump and performed a 5 minute

hybridization. At each minute during hybridization, we pulled an additional 4 µL of

hybridization solution through the device. After hybridization, we loaded 200 µL of

wash buffer into the reservoir and then the pump pulled the buffer through at 200
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µL/min. We repeated this wash step 2 additional times for a total of 3 wash steps of 1

minute each. Finally, we applied 200 µL of 2X SSC and imaged the sample. All flow

rates were 200 µL/min unless otherwise noted.

A.2.7 Rapid RNA FISH on coverglass

As previously described, we fixed all samples in methanol prior to RNA FISH [106].

We prepared probe solution by combining 50 µL of hybridization buffer containing

10% formamide, 2X SSC, and 10% dextran sulfate with 1 µL of each probe (at stock

concentrations ranging from 1288 ng/µL to 5800 ng/µL). For each experiment, we

removed all of the methanol from the sample, applied 10 µL of hybridization solution,

and covered the sample with a coverslip to disperse the hybridization solution. We

hybridized the RNA FISH probes for 5 minutes on a 37°C hotplate. We then washed

the samples 3 times for 1 minute at 37°C with wash buffer containing 10% formamide

and 2X SSC. Finally, we imaged the cells in 2X SSC.

A.2.8 SNP RNA FISH on coverglass

We adapted SNP RNA FISH protocols previously developed in our lab to target

the 823 C -> T mutation in influenza H1N1 [57, 106]. Twenty four hours after infection

with the virus, we fixed the infected cells using 100% methanol. We prepared a probe

solution by combining 50 µL of hybridization buffer containing 10% formamide, 2X

SSC, and 10% dextran sulfate with 1 µL of guide probe, 0.5-2 µL of wild-type and

mutant probe (volume adjusted to achieve 1:1 concentration ratio of the probes),

and mask oligonucleotide at the volume for 2X the concentration of each SNP probe.

We removed the methanol from the fixed cells, applied 10 µL of probe solution, and

hybridized the probes for 20 minutes at 37°C on a hotplate. We then washed the
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sample 3 times for 1 minute at 37°C with wash buffer containing 10% formamide and

2X SSC. Finally, we imaged the cells in 2X SSC.

A.2.9 Microscopy

After RNA FISH, we imaged each samples on a Nikon Ti-E inverted fluorescence

microscope using a 20X Nikon Plan objective (numerical aperture 0.40), 100X Plan-

Apo objective (numerical aperture of 1.40) and a cooled CCD camera (Andor iKon 934).

For 100X imaging, we sequentially acquired three-dimensional stacks of fluorescence

images in five different fluorescence channels using filter sets for DAPI, Cy3, Alexa 594,

Atto 647N, and Atto488. Our exposure times ranged from 0.1-2 sec. For SNP FISH

specifically, we used exposure times of 3-5 sec. The spacing between consecutive planes

in our stacks was 0.3 µm. For 20X imaging, we scanned the a specified area of interest,

and at each position, we acquired one fluorescence image in five different fluorescence

channels using filter sets for DAPI, Cy3, Alexa 594, Atto 647N, and Atto488. The

filter sets we used were 31000v2 (Chroma), 41028 (Chroma), SP102v1 (Chroma), a

custom set from Omega as described previously [58], SP104v2 (Chroma) and SP105

(Chroma) for DAPI, Atto 488, Cy3, Alexa 594, Atto 647 N and Atto 700, respectively.

A.2.10 Pan-probe design software

We implemented our pan-probe design software in MATLAB. The software has

4 main steps: 1) sequence cross-matching, 2) probe elimination, 3) oligonucleotide

placement memoization, and 4) oligonucleotide solution readout. In step 1, the software

reads an aligned FASTA-format file of sequences and compares 20 base pair oligonu-

cleotides between all sequences for starting at each position in the aligned sequences,

yielding cross-matches for all oligonucleotides. In step 2, the software eliminates probes
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whose hybridization affinities are too far away from a predetermined optimum, deter-

mined to be equivalent to around 45% GC [91]. In step 3, the software uses dynamic

programming/memoization to globally optimize the placement of oligonucleotides

subject to the goals of minimizing the total number of oligonucleotides while still

covering all sequences with a user-defined minimum number of oligos. In step 4, the

best solution is read from the memoization table and returned to the user.

A.2.11 Subtype-specific design software

We implemented our subtype-specific probe design software in MATLAB. Our

software runs similarly to previous design software [91], but in addition to the target

sequence, it also accepts a set of other sequences that it tries to avoid. In the context of

this manuscript, the target would be the desired viral substrains and the other sequences

would be all related substrains that we wish to avoid targeting. Our algorithm screens

every candidate oligonucleotide probe (i.e., 20 base oligonucleotides that bind to the

target with perfect complementarity) for cross-targeting by excluding all candidates

that exhibit more than some user-specified amount of sequence complementarity to

all the avoided sequences (in our case, more than 14/20 bases).

A.2.12 Image processing

We implemented our image processing software in MATLAB. First, the software

uses phase-correlation to create a montage of individual image tiles. Second, the user

defines a region of interest (ROI) to delineate the microscopy viewing area of the

device and exclude spurious non-cellular material. The software then stitches together

the ROI image for each channel, applying a rolling-ball background subtraction to each

included image tile. Third, using the DAPI channel ROI image, nuclei are segmented.
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The software applies a wavelet filter to filter out high-frequency noise and examine

objects about the size of nuclei, thresholds the image using Otsu's method, and then

deletes small, edge, and non-circular objects. Each nuclear object is then increased by

a 2 pixel radius to create objects that would include both the nucleus and cytoplasm

of a typical cell. Fourth, the GFP channel of the image is used as a mask to delete

spurious objects that may be the result of dust or other non-cellular objects being

trapped by the device filter. The software removes objects that overlap with GFP

pixels that are greater than 3 standard deviations above the mean GFP intensity.

Fifth, the software determines median viral RNA (vRNA) fluorescence intensity using

pixels in each cellular object, a histogram is created, and the fluorescence intensity of

the first maxima of the histogram is subtracted from the vRNA fluorescence intensity

data to help eliminate device-to-device variability in washes and image acquisition.

A.2.13 SNP FISH image processing

First, we segmented cells and located individual RNA spots using our lab's custom

software described in Levesque et al. For each spot, we fit a two-dimensional gaussian

to determine the location of the spot with sub-pixel resolution. We then performed

co-localization by finding the nearest SNP probe signal to every guide spot within a

3.0 pixel range. From this, we obtained the median displacement vector field for each

SNP FISH and guide pair and subsequently shifted the image to correct for chromatic

deviations. We then repeated the search for colocalization between the guide and SNP

probe using a 1.5 pixel range to establish the final colocalization.
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A.3 Cancer RNA FISH methods

A.3.1 Cell culture, drugs, and fixation

We grew melanoma cell lines (WM9, WM983B, and 1205Lu, SK-MEL-28) from the

lab of Meenhard Herlyn, validated in the Herlyn lab by short tandem repeat profiling

using AmpFlSTR Identifiler PCR Amplification Kit (Life Technologies) in Tu2% media

containing 78% MCDB, 20% Leibovitz?s L-15 media, 2% FBS, and 1.68mM CaCl2

and primary melanocytes isolated from human neonatal foreskin (Fom217-1 from the

lab of Meenhard) in Medium 254CF (Life Technologies, M254500) supplemented with

Human Melanocyte Growth Supplement (Life Technologies, S0025). We also grew

HeLa cells and MDA-MB-231 cells in DMEM supplemented with 10% FBS, PC-9

cells in RPMI supplemented with 10% FBS, and SH-SY5Y cells in DMEM/F12 with

10% FBS. We made stocks of 4 mM vemurafenib (Selleckchem, S1267) and 4 mM

lapatinib (Santa Cruz Biotechnology, 202205B) in DMSO, and diluted in media to

a final concentration of 1 µM in all drug treatment experiments. For all RNA FISH

experiments, we grew cells on two-well Lab-Tek chambered coverglasses. We fixed and

permeabilized cells for RNA FISH according to [91].

A.3.2 Time-lapse imaging

We imaged the cells on a Nikon Ti-E enclosed in plexiglass incubation chamber

heated to 37°C with 5% CO2. We seeded WM9 cells into a two-well Lab-Tek chambered

coverglasses and took brightfield images every 2 hours for 28 days. At each time point,

we acquired a total of 702 images over a 39x18 grid of images at 10X magnification to

capture the entire culture dish. We stitched each of tiles into one composite image for

each time point and then compiled movies from the images using MATLAB.
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A.3.3 Luria Delbruck fluctuation analysis

To minimize pre-existing genetic heterogeneity in the cell line, we isolated a single-

cell clones from WM9 and WM983B melanoma cell lines. We expanded these clones

up to 100-200 cells total and then isolated single cells to derive the subclones for the

Luria Delbruck fluctuation analysis. We then allowed the subclones to grow in culture

through 20 doublings for WM9 and 22 doublings for WM983B to give approximately

1 million cells and 4 million cells, respectively. After expansion, we trypsinized each

subclone, counted the number of cells in the culture using a hemocytometer, and

then seeded 600,000 cells into 2 12-well plates (yielding 25,000 cells per well). We

had a total of 43 and 29 subclones with the WM9 cell line (biological replicates) and

20 subclones for WM983B. One day after seeding into 12-well plates, we applied 1

µM vemurafenib. Throughout the experiment, we changed the media and drug and

counted the number of resistant colonies twice per week. We ended the experiment

when the plates stopped developing new resistant colonies or when all the resistant

colonies appeared to be daughter colonies from larger ones. Note that upon re-plating

the cultures before administration of drug, we observed varying degrees of growth

and plating efficiency, all of which served to increase the variance, as we found that

cultures with larger numbers of cells following replating had generally higher numbers

of resistant cells. Thus, by not taking this into account, our observed variance is likely

higher than the actual variance, biasing against the transient pre-resistance hypothesis.

To show that our resulting counts of resistant colonies were likely not the result

of a strongly heritable transition to a pre-resistant state, we simulated the strongly

heritable Luria-Delbruck process. Briefly, the parameters are the initial culture size

(set to one in our case), the ultimate sizes of the cultures (we used the largest multiple

of two lower than the actual measured culture sizes, thus biasing against ourselves),
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and the mutation rate, which we varied as part of our simulations. For each mutation

rate, we ran the simulations 10,000 times, and noted both the Fano factor (variance

divided by the mean) and coefficient of variation across the simulated cultures for

each iteration. We then computed a p-value for each mutation rate by determining

how often the simulated Fano factor or coefficient of variation (separate p-values for

each statistic) exceeded our actual measurements (Fig. 4.5 and Fig. 4.6). The p-value

we report is based on the most conservative estimate based on both the statistics we

computed.

A.3.4 Iterative RNA FISH

We designed oligonucleotide probe sets using the Stellaris probe designer (Biosearch

Technologies) and ordered them with an amine group on the 3'end. We pooled the

oligonucleotides for each probe set and coupled them to either Cy3 (GE Healthcare),

Alexa 594 (Life Technologies), Atto647N or Atto 700 (Atto-Tec). We performed RNA

FISH as previously described [90, 91] for each of the cycles of hybridization. We first

fixed cells with formaldehyde and permeabilized with 70% ethanol. We next washed

once with wash buffer (containing 10% formamide and 2X SSC) and then applied

hybridization buffer (containing 10% formamide, 10% dextran sulfate, and 2X SSC)

with the specified pool of RNA FISH probes. We hybridized for 6-12 hours and then

washed 2 times for 30 minutes with wash buffer.

After imaging, we applied 60% formamide with 2X SSC for 15 minutes on a heat

plate kept at 37°C. We then washed the sample 3 times with 1X PBS for 15 minutes

also at 37°C to remove residual formamide, which we have found can inhibit further

hybridizations. Lastly, we washed once with wash buffer to remove residual 1X PBS

and prepare the samples for another RNA FISH hybridization.
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A.3.5 RNA FISH on patient derived xenografts

We fixed tissue sections by treating with 4% formaldehyde in PBS for 10 minutes

and then permeabilized and stored them in 70% ethanol at 4°C. We performed one

cycle of RNA FISH as described above. We mounted the samples for imaging in 2X

SSC. We performed these experiments with two biological replicates from different

mice and different tissue donors.

A.3.6 RNA FISH imaging

We imaged each sample on a Nikon Ti-E with a 60X Plan-Apo objective and filter

sets for DAPI, Cy3, Atto647N, Alexa594, and Atto700. We used Metamorph imaging

software (Scan Slide application) to acquire a tiled grid of images (40 by 40 for the

data sets shown in Fig. 4.14, A) covering a 8.9 mm by 8.9 mm area of the sample. We

used the Nikon Perfect Focus System to ensure that the images remained in focus

over the imaging area.

A.3.7 Image analysis

We developed a custom MATLAB pipeline for counting RNA FISH spots in tiled

images. First, this software segments the nuclei of individual cells using the DAPI

images. Next, the software identifies regional maxima in each tiled image as potential

RNA FISH spots and assigns them to the nearest nucleus. Through a MATLAB

GUI, the user selects a global threshold for each RNA FISH channel to identify the

individual spots. We then visually inspected all cells that were above the jackpot

threshold and used GUI editing tools to remove any autofluorescent debris or artifacts

from subsequent analysis. Lastly, we extracted the position of every cell in the scan

and the number of RNA molecules for each fluorescent channel.
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We also developed software to match cells across subsequent hybridizations, which

poses a challenge because of slight warping in the tiled image in each acquisition. Our

algorithm attempts to match cells locally by shifting cells in the first hybridization to all

potential candidates in the subsequent hybridization, choosing the best match as the one

that minimizes total distance for nearby cells. We then smooth out this shift and apply

it across the entire tiled image field. We then matched cells by proximity, discarding

cells that did not match uniquely to a nearby cell in subsequent hybridizations; our

yield was typically >90% of cells in the initial hybridization matching in subsequent

hybridizations.

We decided whether or not a cell was deemed a “high” expressing cell for a particular

gene by determining whether the number of mRNA molecules in the cell exceeded

a threshold. To avoid bias, our default was to set a threshold that captured the top

2% of cells. If this percentage did not yield a reasonable threshold, we manually set a

more appropriate threshold based on the distribution. Occasionally, autofluorescent

debris in the images would be spuriously identified as cells, often with high numbers

of false spots in them. Thus, we manually removed such regions, starting with cells

with the highest number of identified RNA counts and continuing until we reached a

relatively low level of mRNA below which manually evaluating the data was no longer

feasible. This procedure ensured that we manually inspected all jackpot cells to verify

their expression levels. For genes that did not exhibit sporadic expression patterns

(including GAPDH, SOX10, CCNA2 ), we set thresholds by plotting the distribution

and selecting a threshold that captures the tail. We performed all iterative RNA FISH

experiments in duplicate with biological replicates. We calculated Gini coefficients on

the distributions of RNA FISH counts for each gene using the “ineq” package in R.
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A.3.8 RNA sequencing and analysis

We sequenced messenger RNA from WM9 and WM983B melanoma cells. For

WM9, we sequenced the RNA from 8 untreated samples, 8 samples treated with 1

µM vemurafenib for 48 hours, 10 resistant samples in 1 µM vemurafenib, 4 resistant

samples with drug removed for 48 hours, and 4 resistant samples with drug removed

for 1 week. For WM983B, we sequenced RNA from 20 untreated samples, 20 samples

treated with 1 µM vemurafenib for 48 hours, 37 resistant samples in 1 µM vemurafenib,

2 resistant samples with drug removed for 48 hours, and 2 resistant samples with drug

removed for 1 week. Each sample is a biological replicate. We used the NEBNext

Poly(A) mRNA Magnetic Isolation Module and NEBNext Ultra RNA Library Prep Kit

for Illumina to extract polyadenylated RNA and prepare barcoded RNA sequencing

libraries. We sequenced each sample at a depth of approximately 20 million reads

on a HiSeq 2000 (50 base pair length) or NextSeq (75 base pair length). We aligned

our reads to hg19 using STAR and quantified reads per gene using HTseq. We then

used R to perform differential expression analysis with DESeq2 to identify resistance

marker genes.

A.3.9 Generation of patient derived xenografts

We collected tumor biopsies from melanoma patients as previously described by [55].

Fresh biopsies were processed under sterile conditions within 24 hours. For processing,

we used a cross blade technique to finely mince the tissue, then briefly digested the

tissue in collagenase IV for 20 minutes at 37°C. The tumor tissue was then implanted

s.c. with matrigel (Corning Life Sciences) into NSG mice (6-8 weeks, male or female).

Tumor grafts were harvested at maximum tumor size and serially transplanted for

expansion. Low passage PDX tumors were mounted in OCT immediately after sacrifice.
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For RNA FISH analysis, we sectioned the tumors into 7 µm slices and then proceeded

with RNA FISH as described above. All sample collection and animal experiments

were approved by Wistar IRB and Wistar IACUC, respectively. We analyzed samples

from two different patients: the first of which had a BRAF-V600E mutation and

which was sensitive to combination BRAF/MEK inhibition, and the second had a

NRAS-Q61L mutation and was not sensitive to MEK inhibition (data from the first

patient is in Fig. 4.16, and data from the second patient is in Fig. 4.17).

A.3.10 EGFR and NGFR fluorescence assisted cell sorting

We stained WM9 melanoma cells for fluorescence assisted cell sorting using an

antibody for EGFR. First, we trypsinized the cells, washed once with 0.1% BSA in 1X

PBS, and incubated for 1 hour at 4°C with 1:200 mouse anti-EGFR antibody, clone

225 (Millipore, MABF120) in 0.1% BSA PBS. Next, we washed with 0.1% BSA PBS

and then incubated for 30 minutes at 4°C with 1:500 donkey anti-mouse IgG antibody

labeled with Alexa Fluor 488 (Jackson Laboratories, 715-545-150). We washed the

samples again with 0.1% BSA PBS and resuspended in 1% BSA PBS with 2 mM

EDTA and DAPI for fluorescence assisted cell sorting. We used a MoFlo Astrios

(Beckman Coulter) to collect the top 0.02-0.2% of cells stained for EGFR. We used

the DAPI stain to exclude dead cells and used cells that were not incubated with the

primary antibody as a negative control. To stain WM9, WM983B, and SK-MEL-28

cells for NGFR, we used anti-NGFR clone ME20.4 fluorescently labeled with PE/Cy7

(Biolegend, 345110). We incubated the cells with 5 µL of antibody for 10 minutes at 4°C.

We then washed the samples and proceeded with sorting (as described above). For our

negative control, we used a PE/Cy7 mouse IgG1 (Biolegend, 400126). When sorting

either EGFR-high or NGFR-high subpopulations, we also collected a EGFR-mixed or
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NGFR-mixed population control by using the same gating for live cells, but without

gating on the EGFR or NGFR stain. When staining for both EGFR and NGFR, we

performed the EGFR staining first then stained with the NGFR antibody. When

sorting for EGFR and NGFR together, we collected all 4 possible populations: cells

negative for both stains, cells positive for EGFR only, cells positive for NGFR only,

and cells positive for both EGFR and NGFR.

A.3.11 ATAC sequencing and analysis

We performed ATAC sequencing on WM9 melanoma cells according to [11]. Briefly,

we lysed the cells and set up the transposition reaction with the Tn5 Transposes

(Illumina Catalog, FC121-1030) at 37°C for 30 minutes. We cleaned the reaction with

a Qiagen MinElute Kit and then amplified the libraries using the custom Nextera

PCR primers described in [11]. We sequenced our libraries on a NextSeq with 75 base

pair reads at a depth of approximately 40-70 million reads per sample. We aligned

our reads to hg19 with bowtie2 and then used the HOMER package for peak calling,

differential peak calling, motif analysis, and gene ontology analysis (code available at

https://bitbucket.org/arjunrajlaboratory/rajlabseqtools).

A.3.12 MTS Cell Proliferation Assay

The cell viability was estimated by using CellTiter 96 Aqueous MTS Cell Prolif-

eration Assay (MTS, PR-G1111). Briefly, WM9 cells were seeded in 96-well plates

with 2000 cells/well. 24 hours incubation later, cells were cultured in the presence of

vemurafenib at serial 3-fold dilution concentration. After 6 days treatment, 20 µl/well

MTS reagent were added and incubated for 4 hours. Then read plate at 490 nm

wavelength to estimate cell proliferation.
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A.3.13 Apoptosis Assay

After treatment with vemuafenib at 1 µM, 3 µM for 3 days, WM9 cells were

harvested with trypsin-EDTA, centrifuged into a pellet including all floating cells,

and rinsed with phosphate-buffered saline (PBS). Then, the cells were re-suspended

in Annexin V binding buffer containing Annexin V APC (Biolegend, 640920) and

propidium iodide (Sigma, P4864). The cells were incubated at room temperature for

15 minutes and were analyzed using the FACSCalibur flow cytometry.

A.3.14 Western Blot

WM9 cells were cultured in 1 µM, 3 µM vemurafenib medium for 3 days. The cells

were collected with or without floating cells and were lysed with TNE buffer with

protease inhibitors. 30 µg protein extracts were electrophoresed on 12% SDS-Page gels

and transferred on the Nitrocellulose membranes in Bio-rad Trans-Blot Turbo transfer

system. The membranes were blocked with ODYSSEY Blocking Buffer (LI-COR,

927-40000) for 1 hour at room temperature and incubated at 4°C overnight with

the following primary antibodies: pMek (Cell signaling, 9121s), pErk (Cell signaling,

4370s), pS6 (Cell signaling, 9121s), caspase3 (Cell signaling, 9662), parp (Cell signaling,

9542s), β-actin (Sigma, A5441). After 2nd antibodies incubation, membranes were

visualized by LI-COR Odyssey infrared imaging system.
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Söding, Julie D Thompson, and Desmond G Higgins. Fast, scalable generation

of high-quality protein multiple sequence alignments using clustal omega. Mol.

Syst. Biol., 7:539, 11 October 2011.

[110] Samuel O Skinner, Heng Xu, Sonal Nagarkar-Jaiswal, Pablo R Freire, Thomas P

Zwaka, and Ido Golding. Single-cell analysis of transcription kinetics across the

cell cycle. Elife, 5:e12175, 29 January 2016.

[111] Sabrina L Spencer, Suzanne Gaudet, John G Albeck, John M Burke, and Peter K

Sorger. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis.

Nature, 459(7245):428–432, 21 May 2009.
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